
246

Original Paper Soil and Water Research, 18, 2023 (4): 246–268

https://doi.org/10.17221/60/2023-SWR

Seasonal variations of vegetative indices and their 
correlation with evapotranspiration and soil water 
storage in a small agricultural catchment  

Tailin Li1*, Massimiliano Schiavo2, David Zumr1

1Department of Landscape Water Conservation, Faculty of Civil Engineering, 
Czech Technical University in Prague, Prague, Czech Republic

2Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milano, Italy
*Corresponding author: tailin.li@fsv.cvut.cz

Citation: Li T.L., Schiavo M., Zumr D. (2023): Seasonal variations of vegetative indices and their correlation with evapotrans-
piration and soil water storage in a small agricultural catchment. Soil & Water Res., 18: 246–268. 

Abstract: A precise measurement of evapotranspiration (ET) and soil water storage (SWS) is necessary for crop manage-
ment and understanding hydrological processes in agricultural catchments. In this study, we extracted the vegetative indices 
(VIs,  including normalised difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vege-
tation index (EVI)) from satellite images of the Nučice catchment. We found a consistent seasonal pattern of VIs across the 
catchment with higher values and variation ranges during spring and summer and lower values and variation ranges during 
autumn and winter. Spatial variation of VIs also followed a seasonal trend, decreasing during crop growth and increasing after 
crop harvesting. Seasonal correlations were observed between monthly average ET and SWS with VIs throughout one crop 
season, which can be expressed mathematically as exponential functions. We propose that VIs can be used as a surrogate me-
asure for ET and SWS in catchments with poor monitoring capabilities. Further studies are required to investigate the spatial 
distribution of ET and SWS throughout the watershed and their relationship with VIs. Furthermore, our research emphasises 
the importance of subsurface recharge in the water balance of the investigated fields. It suggests that subsurface flow may 
be influenced by potential gradients of the water table, driving its seasonal behaviour in response to bedrock morphology.
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When it comes to crop management and under-
standing hydrological processes in agricultural catch-
ments, an accurate estimation of evapotranspiration 
(ET) and soil moisture is essential (Zhang & Wege-
henkel 2006; Park et al. 2017; Cheng et al. 2022a). 
Evapotranspiration represents the combined loss 
of water from the soil through evaporation and from 
the plant canopy through transpiration, while soil 

moisture is an essential indicator of soil health and 
water availability for crops. However, ET and soil 
moisture are two of the most challenging elements 
of the water cycle to monitor on field to regional 
scales because of the uncertainty introduced by land 
surface heterogeneity and environmental restrictions 
(Wang et al. 2006; Martínez & Gilabert 2009; Allen 
et al. 2011b; He et al. 2019; Wyatt et al. 2021). Fur-
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thermore, catchments with high levels of agricultural 
activity pose supplementary obstacles, as agricultural 
practices and land management often hinder effective 
monitoring of evapotranspiration and soil moisture 
(Hébrard et al. 2006; Rong et al. 2017). 

Various methods have been developed for measur-
ing ET and soil moisture. Traditional methods for 
measuring ET include the soil water balance method, 
lysimeters, the Bowen Ratio Energy Balance (BREB), 
Eddy covariance (EC), scintillometers, and sap flow 
methods (Allen et al. 2011a). The soil water balance 
method (Jensen & Wright 1978; Cholpankulov et al. 
2008) estimates ET by simply measuring soil moisture 
changes over time. Similarly, lysimeters (Howell et al. 
1995; Marek et al. 2006) allow for direct measure-
ment of ET by collecting and measuring the water 
that is lost through evapotranspiration. On the other 
hand, the BREB method (Bowen 1926; Angus & Watts 
1984; Devitt et al. 1998) involves measuring energy 
exchange at the surface to estimate ET. Likewise, 
the EC method (Wilson et al. 2002; Baldocchi 2003) 
measures heat and gas exchange in the atmospheric 
boundary layer above the vegetation and calculates 
the vertical water vapour fluxes. Scintillometers are 
optical sensors that measure turbulence by analysing 
the scattering and fluctuation of light as it passes 
through the atmosphere, providing estimations of heat 
fluxes that can be linked to ET (Meijninger et al. 
2002). The sap flow approach, on the other hand, 
directly monitors the water flow within plant stems 
or trunks, thus quantifying plant transpiration, which 
is a component of ET (Granier 1987).

Soil moisture is another critical variable in the wa-
ter cycle, referring to the amount of water stored 
in the soil profile. Common approaches to assessing 
soil moisture include direct soil sampling, and in-
situ measurements using time-domain reflectometry 
(TDR) or time-domain transmissometry (TDT) sen-
sors. Direct soil sampling (Famiglietti et al. 1998) 
involves physically removing soil from a given location 
and weighing it before and after drying to determine 
moisture content. In-situ methods (Robinson et al. 
2003; Bogena et al. 2010) such as TDR or TDT sen-
sors use probes inserted into the soil to measure the 
electrical permittivity (Topp et al. 1980) of the soil, 
which is then used to estimate soil moisture content. 

However, these on-site measurements are usually 
constrained by spatial and temporal resolution and 
the expense of a dense sensor network (He et al. 2019). 
In recent years, researchers have increasingly turned 
to satellite imagery to understand ET and soil mois-

ture at large scales (from the regional to the global 
level). Satellite-derived vegetation indices (VIs) are 
commonly used in agricultural fields to monitor the 
dynamics of plant growth and to estimate important 
biophysical parameters, such as leaf area index, bio-
mass, and chlorophyll content (Tucker 1979; Gitelson 
et al. 1996). Further, VIs such as the normalised differ-
ence vegetation index (NDVI) (Rouse et al. 1973), the 
soil-adjusted vegetation index (SAVI) (Huete 1988), 
and the enhanced vegetation index (EVI) (Gao 2000; 
Huete et al. 2002) can also be used to predict ET and 
root-zone soil moisture. By combining the NDVI, SAVI, 
and surface temperature obtained from satellite im-
ages, and with the evapotranspiration Priestley-Taylor 
model (Priestley & Taylor 1972), Fisher et al. (2008) 
were able to create monthly maps at the global scale 
of ET and verify them using local observations. Al-
ternatively, many studies (Zhang & Wegehenkel 2006; 
Yuan et al. 2010; Park et al. 2017) exploited satellite-
derived vegetation indices to determine the crop coef-
ficient (Kc) and then multiplied the Kc by the reference 
evapotranspiration (calculated based on FAO-56 (Allen 
et al. 1998)) to estimate the actual ET. Moreover, VIs 
retrieved from optical remote sensing datasets can also 
be utilised in assessing soil moisture observation. For 
example, with a combination of NDVI snapshots and 
in-situ meteorological data, some studies (Crow et al. 
2008; Wyatt et al. 2021) estimated the soil moisture 
dynamics in root zone under various land cover types 
using a simple water balance model based on the FAO-
56 dual crop coefficient approach (Allen et al. 1998). 
To further enhance the soil moisture estimate, several 
studies used the remote sensing-based datasets with 
the physically based model (Zhang & Wegehenkel 2006; 
Benninga et al. 2022), random forest regression (Cheng 
et al. 2022b) and machine learning method (Abowarda 
et al. 2021; Cheng et al. 2022a; Nguyen et al. 2022).

Because of the limitations given by the occasional 
occurrence of cloud cover and generally low spatial-
temporal resolution, satellite imagery is widely used 
for large-scale studies; nevertheless, small-scale spatial 
variations in evapotranspiration and soil water storage 
patterns must also be considered. Since in the small 
catchments, both farmers and water management can 
benefit from a better understanding of the spatial and 
temporal fluctuations in evapotranspiration and soil 
water storage within individual fields, as this knowl-
edge drives advances in precision agriculture and 
optimises harvest yields. To fill this information gap, 
many commercial companies, most notably Planet 
(http://www.planet.com), are pioneering the launch 
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of CubeSats to offer high-resolution imagery (McCabe 
et al. 2017). Since then, several studies (Aragon et al. 
2018, 2021; Houborg & McCabe 2018; Kimm et al. 
2020; Ziliani et al. 2022) have been able to use cloud-
free daily imagery of 3 m spatial resolution provided 
by CubeSats (from Planet) to enhance agricultural 
management on small field scales.

For historical reasons, most of the farmland in the 
Czech Republic consists of big, uniformly cultivated 
fields that are spread out over the country (Noreika 
et al. 2021). Despite their seemingly uniform ap-
pearance, the water balance within these fields may 
be influenced by various factors, including lateral 
subsurface flows (Tenreiro et al. 2022), topography and 
soil texture (Biswas 2019), or tillage direction (Jeřábek 
et al. 2022), which can alter the routing mechanism 
of water and sediment then further results in non-
uniform distribution of soil water across the fields. 
Furthermore, even on a small-scale agricultural field, 
the surface energy balance may exhibit considerable 
variability due to the heterogeneity of land surface 
characteristics, vegetation cover, and microclimate 
conditions (Wohlfahrt & Tasser 2015). The spatiotem-
poral variation in the water and surface energy balance 
at a small-scale field could contribute to vegetation 
heterogeneity and manifest in the VIs obtained from 
satellite imagery. In the small-scale farmlands, how-
ever, the dynamics of satellite-derived VIs and their 
link with variations in ET and soil moisture remain 
largely unexplored. Hence, in this study, we have 
investigated cloud-free, high spatial and temporal 
resolution satellite images at the experimental catch-

ment (Nučice) to understand: (i) how satellite-derived 
VIs are distributed across a uniform land use pattern? 
(ii) the temporal correlation between satellite-derived 
VIs and in-situ measurements of ET and soil moisture; 
(iii) the seasonal dynamics of the satellite-derived VIs 
and in-situ measurements of ET and soil moisture. 

MATERIAL AND METHODS

Site description
The investigation was done in the experimental 

catchment of Nučice, Czech Republic. The water-
shed (0.531 km2) has a mean elevation of 401 m a.s.l. 
(range from 382 to 417 m a.s.l.) with an average slope 
of 3.9% (ranging from 1% to 12%). The basin’s outlet 
(49°57'49.230''N, 14°52'13.242''E) has been equipped 
with a gauging station since 2011. Since then, the 
catchment’s hydrological and meteorological fea-
tures have been observed. Based on the long-term 
regional measurements in the vicinity (Hanel et al. 
2013), yearly precipitation averages 630 mm, the 
annual air temperature averages 6 °C, and annual 
evapotranspiration averages 500 mm, making the 
catchment’s climate humid continental. The same 
land use pattern characterises the whole catchment 
area: more than 95% of the site is used for agricul-
tural purposes, while the watercourse, riparian trees 
and bushes, and paved roads take up the remaining 
sections. The topsoil has a loamy texture with 13% 
clay, 42% silt, and 45% sand content. The watershed 
area is separated into three distinct agricultural fields 
(left, right, and top fields) (Figure 1). Due to the uni-

Figure 1. Meteorological and soil 
moisture measurements at  the 
Nučice catchment
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form morphology and tillage practice in each field, 
the topsoil characteristics in each field are similar. 
(Zumr et al. 2015; Jeřábek et al. 2017; Li et al. 2021)

In-situ meteorological and soil water content 
(SWC) monitoring

Since 2021, three meteorological stations (T_ET, 
L_ET, E_ET) have been deployed across three fields 
to measure evapotranspiration, each equipped with 
a net radiation sensor (NR Lite2, Kipp and Zonen, 
Netherlands) and all the sensors needed for the 
BREB calculation. In addition, one station (T_ET) 
has a four-component radiometer SN-500 (Apogee 
Instruments, USA). Data are captured and saved 
in data loggers every 10 min. The ET (mm/day) at each 
three ET stations were calculated based on the BREB 
equation (Bowen 1926; Irmak et al. 2014).

   (1)

where:
λE – the latent heat;
λ – the heat of water vaporisation;
E – the evapotranspiration;
Rn – the net radiation;
G – the soil heat flux density
β – the Bowen ratio, which can be expressed and cal-

culated by the following equation: 

   (2)

where:
H – the sensible heat flux;
ΔT, Δe –the temperature and vapour pressure difference 

between the two measurement levels;
γ – the psychrometric constant.

Precipitation has been measured at four points 
(Rain_outlet, Rain_west, Rain_PL147, T_ET) through-
out the catchment at intervals of 5 to 10 min. In this 
study, the average precipitation intensity calculated 
by averaging the data from the four stations was 
utilised.

Since the winter of 2019, CR650 soil water con-
tent reflectometers (Campbell Sci., UK) have been 
installed at depths of 10, 20, 30, 40, 50, and 60 cm for 
long-term measurement of soil water content in the 
centre of the catchment (SWC_PL144 in Figure 1). 
Prior to installation, all soil probes were calibrated, 
and they recorded data at hourly intervals. Soil wa-
ter storage (SWS) was calculated by integrating the 
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soil water content measurements across the entire 
profile (0–60 cm). 

Satellite-based vegetation indices
We obtained cloud-free, high temporal (daily 

to weekly) images of high spatial resolution (3 m) from 
the PlanetScope imagery database, which is a constel-
lation of 130 + CubeSats (4-kg satellites) (McCabe 
et al. 2017) maintained by the Planet company (http://
www.planet.com). PlanetScope imagery is comprised 
of four spectral bands, including blue (455–515 nm), 
green (500–590 nm), red (590–670 nm), and near-
infrared (NIR, 780–860 nm) (Cheng et al. 2020; Estes 
et al. 2022). Further, we retrieved the normalised dif-
ference vegetation index (NDVI) (Rouse et al. 1973), 
soil-adjusted vegetation index (SAVI) (Huete 1988) 
and enhanced vegetation index (EVI) (Gao 2000; 
Huete et al. 2002) based on the following equations: 

   (3)

   (4)

   (5)

where:
ρNIR, ρred, ρblue – the reflectance in  the PlanetScope 

bands (near-infrared, red, and blue).

For data from January 2019 through September 2022, 
we calculated all of the VIs in the catchment (which 
covers most of the measuring time of the in-situ mea-
surements). These calculations were performed using 
satellite pictures that were appropriately projected 
to maintain consistency in pixel structure. Further, 
to compare the VIs and local measurements, we re-
trieved the spatial mean VIs in each field and the buffer 
zone (20 m) surrounding each in-situ meteorological 
station and SWS nest. According to its size, each field 
has a different number of pixels (3 × 3 m): the top 
field has 41 099 pixels, the left field has 10 576 pixels, 
and the right field has 3 782 pixels. Moreover, each 
buffer zone contains 143 pixels.

Statistical analysis
Assessing variable associations through quan-

titative metrics. Cloud cover in the satellite images 
caused data gaps (mainly in spring and winter seasons) 
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in our dataset, which reduced the data representation. 
The data were therefore averaged into a monthly time 
step. Further, each variable of interest (the monthly 
VIs, ET, and SWS) was collected within a seasonal 
ensemble during the measurement period. We used 
the coefficient of variance (CV) to quantify the spatial 
variability of the VIs across each field. 

The correlation among all variables was modelled 
using simple linear or exponential functions (by us-
ing curve fitting function from Scipy Python library) 
to better understand the underlying trends and as-
sociations. Specifically, the following function was 
used to model the associations between monthly 
VIs and ET: 

   (6)

whereas the relationships between monthly VIs and 
SWC or SWS were modelled using the exponential 
function shown below:

   (7)

where:
a, b, c – the fitting parameters for the optimisation.

Further, we evaluated the associations using the 
coefficient of determination () and root mean square 
error (RMSE):

   (8)

   (9)

where:
RSS – the sum of squared residuals;
TSS – the total sum of squares;
Yobs, Ysim – the obaserved and simulated values (from 

fitted functions).

Seasonal analysis. To evaluate the seasonal vari-
ation, we based the seasonal dataset on monthly 
aggregated data to avoid null measurements, dis-
regarding those when our instruments did not cap-
ture at least one of the measured quantities. At the 
monthly scale, the temporal sequence of the dataset 
was preserved for all the measured quantities. Fur-
thermore, we normalised each monthly quantity 
upon its maximum value within the same month; 
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hence all data were treated as real numbers within 
the unit interval. Finally, we aggregated the data 
at the seasonal scale through the usual convention 
employed in hydrological studies in Central Europe:
Spring = March, April, May (MAM)
Summer = June, July, August (JJA)
Autumn = September, October, November (SON)
Winter = December, January, February (DJF)

We aimed to evaluate the correlation quality be-
tween selected variables worthy of special attention 
in respect of the other ones. The selected ones are 
the measured ET in the three fields and the SWS 
from PL144 because it has a  long and consistent 
measuring period and is in a representative location 
of the catchment.

We employed the Nash-Sutcliffe Efficiency Index 
(NSE; Nash & Sutcliffe 1970) to measure the temporal 
similarity between (i) ET and the other variables, 
and (ii) SWS and the other variables. 

The NSE index is presented as follows:

   (10)

where:
i – the index referring to the i-th monthly entry, con-

sidered for a specific season s;
Xi – the i-th value of an independent variable;
Xs – its seasonal mean;
Yi – the i-th dependent variable.

The NSE index (–∞;1) is useful by informing about 
the biases between two variables, which must be tem-
porarily homogeneous, and the sum of the variances 
of the independent variable. The closer to 1, the 
higher the similarity between two compared series 
of monthly variables aggregated at the seasonal scale. 

Thus, we first evaluated NSE efficiency indices 
using ET for the left, right, and top fields (Figure 1) 
as independent variables and then considered SWS 
as the independent variable. Because of the high 
number of negative values of NSE to be considered, 
we preferred the Normalised Nash-Sutcliffe Efficiency 
index (NNSE, (0;1)) to the NSE version, with the 
former one written on a seasonal base as

   (11)

The closer the seasonal NNSE index to 1, the higher 
the similarity between the ratio of the sums of monthly 
values of two variables Xi and Yi, summed at the sea-
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sonal scale. NNSE values close to 1 mean that both 
the average bias between monthly-summed values 
and the variance of the independent variable is low, 
which lets us quantify how much to temporal series 
of two variables are mutually similar.

For each season, we evaluated the i-th NNSE, corre-
sponding to the i-th month, and the range of variation 
of this similarity and its median value. To pursue this 
aim, we made use of seasonal boxplots, one for each 
field and seasonally divided, reporting the similarity 
between an independent variable (ET for left, right, 
and top field, then SWS) and another dependent one 
among those we monitored.

The similarity between the (empirical) probability 
distribution functions (PDF) of variables referring 
to different physical quantities might be challenging. 
Further steps toward a deeper statistical appraisal 
of considered quantities are needed to fully compre-
hend our data and how to relate different variables 
mutually. The path we followed to approach this issue 
is to recognise the first statistical moments of each 
(normalised) seasonal variable’s PDF, to surrogate 
the behaviour of a PDF upon its statistical moments 
change across seasons. We first calculated four sta-
tistical moments at the seasonal scale for each vari-
able we considered. The seasonal variables dataset 
we gather are firstly normalised, as well as we pointed 
out earlier in this Section. This way, seasonal statisti-

cal moments are between 0 and 1 for each considered 
season to ease their comparison. The seasonal mo-
ments we analyse are the mean, variance, skewness, 
and kurtosis for each normalised variable. These are 
enough to fully appraise variables’ PDF (e.g. Schiavo 
et al. 2022) because they rule the density distribu-
tion of seasonally-aggregated data. The aim of do-
ing such an analysis is that similarity in normalised 
statistical moments of the same order k, with k = 1, 4 
here, enables us to assess whether two variables are 
statistically comparable. Moreover, the similarity 
(i.e. similar normalised statistical moments’ values) 
of only one moment of a variable’s distribution is not 
enough to sustain the former hypothesis; hence all 
the major statistical moments need to be calculated.

RESULTS AND DISCUSSION

The temporal and spatial variations of VIs. Spa-
tial distribution and temporal patterns of vegetation 
indices in the following Figures. Figure 2 illustrates 
the monthly NDVI coverage of the study area (Fig-
ure 1) in 2022, which was later aggregated by season. 
Figure 3 and Figure 4 show the temporal and spatial 
variation of EVI (panel A), NDVI (panel B), and 
SAVI (panel C) across the whole observation period 
(2021-01 to 2022-08) for the three investigated fields, 
respectively.

Figure 2. The monthly average of the normalised difference vegetation index (NDVI) value in 2022 across the catchment
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Figure 4. The coefficient of variation (CV) of the vegetation indices (VIs) fluctuates across three fields
EVI – enhanced vegetation index; NDVI – normalised difference vegetation index; SAVI – soil-adjusted vegetation index

Figure 3. Temporal variation of the vegetation indices (VIs) across the three fields
EVI – enhanced vegetation index; NDVI – normalised difference vegetation index; SAVI – soil-adjusted vegetation index
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During the study period, there was a notable vari-
ability in the vegetation of the three fields (Figure 2). 
Moreover, all VIs followed the same temporal pat-
tern: the highest values of VIs typically occurred 
during the spring and summer months (along with 
the highest variation ranges), whereas the lowest 
values and variation ranges of VIs typically occurred 
in autumn and winter due to crop harvesting and crop 
residue removal (Figure 3; Table 1). VIs are sensitive 
to various biophysical and biochemical parameters 
of vegetation, including biomass, leaf area index (LAI), 
photosynthetically active radiation (PAR), chlorophyll 
content, and water content (Hatfield & Prueger 2010; 
Kokhan & Vostokov 2020). The seasonal pattern 
of VIs observed in this study can be explained by the 
phenological stages of the crops and their responses 
to environmental conditions (Hatfield & Prueger 
2010): higher values of VIs in spring and summer 
indicate higher biomass production, LAI expansion, 
chlorophyll synthesis, and PAR interception by the 
crops, lower values of VIs in autumn and winter 
indicate lower biomass production, LAI reduction, 
chlorophyll degradation, and PAR reflection by the 
crops or soil surface. The variation ranges of VIs also 

depend on the phenological stages: wider ranges oc-
curred when crops were rapidly growing or harvested; 
narrower ranges appeared when crops were in early 
growing stages or already mature. 

There were noticeable distinctions in all the VIs 
throughout the three fields (Figures 2, 3) due to dif-
ferences (Table 1) in tillage practices and crop man-
agement (Noreika et al. 2020). Despite the fact that 
all three fields were assumed to be uniformly man-
aged, spatial variation in VIs was observed in each 
field (Figure 2, 4). Spatial variations in VIs among 
all fields were observed to follow a similar seasonal 
trend in line with crop development. As the crops 
grew over the spring and summer, spatial variation 
steadily declined, reaching its lowest point when VIs 
achieved their highest values, suggesting that the 
crops were ripe and ready for harvest. Subsequently, 
spatial variance also gradually increased during au-
tumn and winter after crop harvesting. This inverse 
relationship between the spatial variability (CV) 
of VIs and VIs values was consistent with previous 
findings (Martin et al. 2007; Chanda et al. 2018).

The spatial variation of VIs within each field can 
be attributed to several factors that affect soil-plant 

Table 1. Crop information on each field from field cameras

Month Top field Left field Right field
2021-04 mustard wheat mustard
2021-05 mustard wheat mustard
2021-06 mustard wheat mustard
2021-07 mustard wheat mustard

2021-08
1st–7th mustard

7th–5th crop residues 
after 15th bare soil

1st–8th wheat
8th–3rd crop residues

after 23rd bare soil
bare soil

2021-09 bare soil bare soil bare soil
2021-10 no data no data wheat
2021-11 no data no data wheat
2021-12 no data no data wheat
2022-01 wheat mustard wheat
2022-02 wheat mustard wheat
2022-03 wheat mustard wheat
2022-04 wheat mustard wheat
2022-05 wheat mustard wheat
2022-06 wheat mustard wheat

2022-07 1st–21st wheat
after 21st crop residues

1st–29th mustard
after 29th crop residues

wheat (harvest between 14th–27th)
after harvest: bare soil

2022-08
1st–4th crop residues

after 4th bare soil 
after 20th cover crops

1st–26th crop residues
after 26th bare soil bare soil
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interactions. For example, elevation can influence 
soil moisture availability and temperature gradients; 
soil characteristics can affect water-holding capacity, 
nutrient supply and root growth; slope can affect water 
runoff and erosion. Moreover, according to Jeřábek 
et al. (2022), slope-wise wheel tracks exhibited high 
structural connectivity and low roughness, increasing 
runoff and sediment transport. These consequences 
of slope-wise wheel tracks are also evident in our study 
(Figure 2), particularly in the top field: the values 
of the VIs were lower along the wheel tracks. In ad-
dition, landscape management change (large fields 
have been progressively subdivided into smaller fields 
in the Czech farmlands, see Noreika et al. (2021)) 
can also contribute to the spatial variance in each 
field varying over time (Figure 4). The spatial vari-
ation of VIs due to landscape management change 
can be understood as a consequence of altering the 

spatial distribution of crops and soil patches. For 
instance, subdividing large fields into smaller ones 
creates more edges and boundaries between differ-
ent fields, which may increase or decrease contrast 
in VI values depending on crop types, management 
practices, and environmental conditions. Smaller 
fields may also have different hydrological regimes 
than larger ones, which affects plant growth and 
stress responses. According to previous studies 
(Noreika et al. 2021, 2022), field reductions in the 
Czech farmlands may strengthen the local water 
cycle and enhance water retention, which may lead 
to positive outcomes. 

The mutual correlation among the VIs, ET and 
SWS. During the crop season (Table 1), the VIs at the 
soil moisture site PL144 followed the pattern EVI > 
NDVI > SAVI (Figure 5B), which indicates that EVI 
was more sensitive to vegetation changes than NDVI 

Figure 5. Temporal change of meteorological variables (precipitation and evapotranspiration (ET)) across the catch-
ment (A), monthly average vegetation indices (B) and soil water storage (C) near soil moisture storage at site PL144
EVI – enhanced vegetation index; NDVI – normalised difference vegetation index; SAVI – soil-adjusted vegetation index; due 
to sensor failure, there were two months of data missing on the top field ET measurement
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and SAVI (Huete et al. 2002). However, NDVI was 
higher than EVI when there was no or sparse veg-
etation, suggesting that NDVI was more influenced 
by soil reflectance than EVI (Huete et al. 2002). SAVI 
was lower than both NDVI and EVI throughout the 
year, implying that SAVI reduced the soil brightness 
contribution to VI values (Huete 1988). 

The ET revealed a similar seasonal tendency with 
VIs (Figure 5A), with high ET rates (up to 5 mm/day) 
in the summer and low ET values (nearly 0) in the 
winter. ET is influenced by several vegetative prop-
erties, including the LAI and chlorophyll content, 
which explains this relationship. Specifically, summer 
months with high air temperatures and net radiation 
result in increased soil evaporation. Simultaneously, 
he presence of active vegetation with higher LAI and 
chlorophyll content increases plant transpiration and 
canopy interception, and hence higher levels of ET. 
In contrast, soil evaporation rates are reduced dur-
ing the winter due to the cooler air temperature and 
decreased net radiation. Additionally, when vegetation 
is sparse, LAI and chlorophyll content are reduced, 
resulting in less plant transpiration and canopy inter-
ception and lower ET values. These findings highlight 
the importance of considering seasonal variations 
in vegetation characteristics in ET estimation and 
suggest that VIs can be a useful tool for predicting 
ET dynamics in different seasons (Glenn et al. 2010).

The seasonal pattern of SWS (Figure 5C) showed 
a high value in winter (up to 240 mm) and a low value 
in summer, with the lowest value (around 120 mm) 
occurring in June. Moreover, the SWS usually had 
considerable variations (about 150 mm) during the 
spring and summer months (from May to August). 

Regarding the climatic drivers of SWS, the correla-
tion between SWS and monthly ET rate was stronger 
than that between SWS and monthly precipitation 
depth (Figure 6), suggesting that ET was the dominant 
factor influencing the monthly scale changes in SWS 
during the cropping season. This implies that crop 
water consumption had a more significant impact 
on soil moisture dynamics than the precipitation 
input during the growing season. These results em-
phasise the importance of considering both seasonal 
variations and crop water use when examining soil 
moisture dynamics.

Figures 7 and 8 illustrate the quantitative associa-
tions between monthly VIs, ET, and SWS during 
a single crop growth season (2021-08 to 2022-06). 
In addition, Table 2 quantified the fitted functions 
and their fit quality across all the variables. 

The monthly VIs and ET (Figure 7) showed a similar 
seasonal pattern across all the fields: they were low 
in autumn and winter, when the crop was at the initial 
stage, and the soil moisture was high (Figures 5, 6), 
and then increased sharply in spring and summer, 
when the crop developed rapidly and needed more 
water for transpiration. This is consistent with pre-
vious studies that have used remote sensing data 
to monitor crop water use and stress at different 
spatial and temporal scales (Glenn et al. 2010). 

However, the relationship between VIs and ET is not 
always linear but rather depends on various factors 
such as net radiation, temperature, soil moisture, 
and vegetation characteristics (Wang et al. 2007). 
For example, as demonstrated by various studies 
(Nguy-Robertson et al. 2014; Shafian et al. 2018; 
Bajocco et al. 2022; Ukasha et al. 2022), VIs and LAI 

Figure 6. The mutual correlation between the monthly average soil water storage (SWS) and evapotranspiration (ET) rate 
from the top field (A), monthly average SWS and precipitation rate (B), monthly average precipitation rate and ET rate (C)
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in croplands, especially winter wheat, exhibit strong 
but non-linear relationships that can be modelled 
by an exponential function. Similarly, Nagler et al. 
(2013) developed an exponential model using MODIS-
based EVI as a surrogate for LAI to estimate the actual 
evapotranspiration in riparian zones (Nagler et al. 
2005, 2020). Abbasi et al. (2021) further adapted this 
exponential model to investigate the ET-VIs corre-
lations for croplands at 30 m resolution and found 
good agreement with ground measurements. These 
studies suggest that VIs can be useful indicators of ET 
dynamics in different ecosystems, but they require 
site-specific calibration and validation. 

Therefore, our study presented a simple method 
to reveal the ET-VIs relations across a single crop 
growing season by exponential functions. The cor-
relation coefficients for the exponential functions 
between VIs and ET ranged from 0.6 to 0.9, depend-
ing on the field and the VI. The highest correlations 
were found for NDVI, which may be attributed to its 
sensitivity to green vegetation cover and chlorophyll 
content. In contrast, EVI showed the lowest correla-
tions with ET, which may be due to its correction 
for soil and atmospheric effects, which further in-
creases its sensitivity to vegetation changes (Abbasi 
et al. 2021; Huete et al. 2002). This approach is easy 

Figure 7. The correlation between monthly average vegetation indices (VIs) (around the evapotranspiration (ET) stations) 
and monthly average ET rate
NDVI – normalised difference vegetation index; SAVI – soil-adjusted vegetation index; EVI – enhanced vegetation index
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to understand and use, making it ideal for areas with 
restricted water resources and limited ground data. 
It simply needs affordable and widely available op-
tical satellite data and meteorological data. The 
non-linear relationship between VIs and ET can 
also be captured, which is reflective of crop growth 
and water demands. Moreover, it can provide reli-
able estimates of ET at high spatial resolution (3 m), 
which can capture the heterogeneity of crop water 

demands in croplands. Nevertheless, this method 
cannot be applicable to other seasons, as it is cali-
brated only for the growing season. Furthermore, the 
quality and accuracy of satellite and meteorological 
data and the translation and localisation of VIs across 
multiple sensors may contribute to inaccuracies and 
uncertainties. Therefore, it  is crucial to validate 
and calibrate this method with ground measure-
ments of meteorological data and compare it with 

Figure 8. The correlation between monthly average VIs and monthly average soil water content at the soil moisture 
station PL144
EVI – enhanced vegetation index; NDVI – normalised difference vegetation index; SAVI – soil-adjusted vegetation index; 
SWS – soil water storage; SWC – soil water content

               Monthly average NDVI                                      Monthly average SAVI                                          Monthly average EVI
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other methods that use different data sources (e.g. 
thermal-based, hydrological modelling).

The soil water storage also showed a clear seasonal 
pattern with VIs (Figure 8), but with an opposite 
trend. Specifically, the soil water storage was high 
and stable in autumn and winter, when the ET was 
low, and the precipitation exceeded the crop water 
demand. Then, the soil water storage dropped sharply 
in spring and summer when the evapotranspiration 
increased with the crop growth, and the precipitation 
was insufficient to replenish the soil water storage. 

Furthermore, our results suggest that VIs were more 
strongly associated with soil moisture in the upper-
most layer of soil than in deeper layers. This finding 
indicates that VIs primarily reflected soil moisture 
conditions in the topsoil, which is directly affected 
by surface vegetation conditions, such as leaf area 
index (LAI), canopy cover, and root zone depth (Li 
et al. 2022; Stocker et al. 2023). Seasonal changes 
in precipitation and temperature can also influence 
soil moisture in this layer. In contrast, deeper soil 
layers are less influenced by surface vegetation but 

Table 2. Fitted exponential functions among all the variables

Variables X Variables Y Exponential function RMSE R2

NDVI

T_ET Y = 0.016e6.8X + 0.4 0.546 0.8059
R_ET Y = 0.023e6.9X + 0.03 0.609 0.7673
L_ET Y = 5.16e − 7e21.5X + 0.6 0.395 0.8860

SWC_10 cm Y = 0.3e 0.028 0.8145

SWC_30 cm Y = 0.4e 0.034 0.6749

SWC_60 cm Y = 0.4e 0.030 0.7168

SWS Y = 223.1e 18.21 0.7432

SAVI

T_ET Y = 0.134e5.4X + 0.2 0.576 0.7836
R_ET Y = 0.173e5.6X − 0.3 0.578 0.7898
L_ET Y = 0.010e9.8X + 0.3 0.492 0.8238

SWC_10 cm Y = 0.3e 0.032 0.7653

SWC_30 cm Y = 0.4e 0.037 0.6065

SWC_60 cm Y = 0.4e 0.033 0.6514

SWS Y = 221.2e 20.82 0.6644

EVI

T_ET Y = 0.087e3.7X + 0.3 0.708 0.6733
R_ET Y = 0.036e5.1X + 0.2 0.744 0.6524
L_ET Y = 1.81e − 6e15.7X + 0.6 0.559 0.7722

SWC_10 cm Y = 0.3e 0.042 0.5883

SWC_30 cm Y = 0.4e 0.043 0.4818

SWC_60 cm Y = 0.4e 0.038 0.5285

SWS Y = 220.1e 24.52 0.5349

EVI – enhanced vegetation index; NDVI – normalised difference vegetation index; SAVI – soil-adjusted vegetation index; 
ET – evapotranspiration; SWC – soil water storage; RMSE – root mean square error
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more by subsurface hydrological processes, such 
as percolation and drainage (Trautmann et al. 2022). 
As a result, the soil water content in these layers may 
be more stable over time unless there are extreme 
events. However, it  is important to note that the 
relationship between soil water storage and VIs may 
vary depending on vegetation type and climate con-
ditions. For example, previous studies have reported 
that SWS and VIs are positively correlated in grass-
lands, shrublands and forestlands, where deep-rooted 
plants can access water stored in deeper soil layers 
or groundwater (Fan et al. 2017; Zhang et al. 2021; 
Stocker et al. 2023). In contrast, other studies have 
found that SWS and VIs are negatively correlated 
in areas where shallow-rooted plants were planted, 
as they rely on topsoil moisture and are sensitive 
to water stress (Wang et al. 2007; Cao et al. 2018).

Seasonal variations in the VIs, ET, and SWS. 
Figure 9 presents the seasonal distribution of all 
normalised variables investigated in the analysis. 
Most fields demonstrated a right-skewed distribu-
tion pattern for evapotranspiration (except for the 
top field, ET_BOW_T) and precipitation, implying 
that high ET and extreme precipitation rates are 
uncommon across all the fields. In contrast, soil 
water storage and soil water content in the root zone 
displayed left-skewed distribution patterns, indicat-

ing that the soil is mostly under wet conditions. For 
the vegetation indices, multimodal distributions 
of NDVI, SAVI, and EVI were observed at all stations.. 
Notably, the EVI demonstrated a tendency towards 
a positively-skewed distribution, which is similar 
to the evapotranspiration distribution, in contrast 
to the left-skewed distributions observed for soil 
water storage.

An appraisal of  statistical moments variation 
on a seasonal basis for each variable can provide 
information concerning (i) how quantities are mutu-
ally related and (ii) which might be coupled hence 
being mutually employed for describing the varia-
tion of each other. The present analysis, again, was 
split into three parts, each one for each field under 
consideration. 

The distribution patterns inferred both from Fig-
ures 9 and 10 lead us to consider how well the seasonal 
soil moisture dynamics, here resembled by SWS, 
might be related to vegetation indices or vice-versa. 
In this case, unknown soil moisture content would 
be surrogated, at least for the moments of the dis-
tribution, by those of vegetation patterns.

Each panel of Figure 10 suggests that the VIs are 
more closely related to SWS seasonal variations 
than to precipitation inferred from available gauges 
based on their mean seasonal values. This finding 

Figure 10. Statistical moments of the variables at the upper field (PL144 station)
MAM – the spring months (March, April, May); JJA – the summer months (June, July, August); SON – the autumn months 
(September, October, November); DJF – the winter months (December, January, February); ET – evapotranspiration; NDVI – 
normalised difference vegetation index; SAVI – soil-adjusted vegetation index; EVI – enhanced vegetation index
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is highly instructive, as it emphasises the importance 
of assessing subsurface flow patterns to properly 
understand crop growth and vegetation indices’ 
spatial distribution, as previously noted by Schiavo 
(2022). It is worth noting that while SWS has the 
same temporal behaviour as VIs (e.g., decreases 
in summer), precipitation behaves differently and 
may not be directly related to crop vegetation indices.

Our analysis revealed that SWS exhibits consider-
able differences from other variables when examining 
higher moments (k = 3, 4) of seasonal values’ distribu-
tions, which is evident from all the panels investigated. 
Here two considerations must be highlighted. First, 
we note that SWS and ET have a similar seasonal 
trend, even though their seasonal values are very dif-
ferent. We think that this similarity is enough to show 
some relation between these variables for higher 
orders of distribution, and to keep SWS relevant 
for our discussion. Second, skewness and kurtosis 
(Kendall & Stuart 1969; Sharma & Bhandari 2015; 
Schiavo et al. 2022) are employable to inform about 
patterns of the distribution itself (i.e. its asymmetry 
(right/left skew) or its flatness, respectively) rather 
than for a quantitative comparison. For the latter 
purpose, mean and variance are more suitable to cap-
ture our seasonal values’ variation. Furthermore, 
skewness and kurtosis between different variables) 
can help us compare the qualitative aspects of dif-
ferent variables’ distributions, for example if they 
share a similar tendency to flatten on a particular 
season or not. This is the purpose why we employed 
them, as well as Schiavo (2022) did with a precise 
type of distribution whose skewness and kurtosis 
are relevant traits.

Employing the NNSE index (Normalised Nash-
Sutcliffe Index) upon ET and soil water storage 
as dependent variables helps assess the relationship 
between these variables and other dependent ones. 
Moreover, these indices are seasonally organised 
to identify if any temporal patterns arise from this 
analysis. When evaluating the relationship between 
ET or SWS and other variables, it is essential to con-
sider both the median estimated NNSE and its range 
of variation. These values can significantly vary from 
season to season, and it is important to remember 
the regional climate patterns in the Czech Republic, 
which has drier springs and winters but wet sum-
mers and autumns due to its Continental Climate 
type (Hanel et al. 2013).

Figure 12 illustrate the relationship between ET 
(employed as an independent variable) with mean 

precipitation rate and VIs (NDVI, SAVI, EVI, respec-
tively) for each field (employed as dependent vari-
ables). Their seasonal patterns are quite comparable 
and can be discussed jointly. NNSE values, computed 
across all the seasons and fields, indicate that pre-
cipitation has the highest seasonal similarity with ET 
compared to other variables. This finding aligns with 
the strong correlation observed between monthly ET 
and precipitation rate (Figure 6) and the similarity 
of their distributions (Figure 9). Precipitation has 
high consistency with ET because the amount of pre-
cipitation largely determines the amount of water 
available for ET, which directly affects the ET rate. 
When there is more precipitation, there is more 
water available for ET, leading to an increase in the 
ET rate. Similarly, when there is less precipitation, 
the amount of water available for ET decreases, 
resulting in a decrease in the ET rate. This is why 
there is a strong correlation between monthly ET 
and precipitation rate, as well as a similarity in their 
distributions. However, among all the seasons, the 
precipitation has the highest NNSE in spring and 
autumn, with a slight decrease in summer, poten-
tially influenced by the growing vegetation. The 
lowest NNSE values appeared in winter, indicating 
the lowest consistency between precipitation and ET 
during this season. This can be attributed to winter 
precipitation falling as snow, which can accumulate 
on the ground, limiting water availability for ET. 

Regarding the seasonal similarity between ET and 
VIs, all the VIs demonstrate comparable values across 
all seasons. However, EVI shows slightly higher simi-
larity than NDVI and SAVI, which may be attributed 
to its higher sensitivity to changes in vegetation 
cover, as previously reported by Huete et al. (2002). 
In terms of seasonality, the similarity between ET 
and VIs gradually increases from winter to summer, 
reaching the highest values in summer. Then it drops 
sharply in autumn (with the highest variation) to the 
lowest value in winter (also revealed in the differ-
ences in statistical moments in Figure 11). 

Moreover, among all the seasons, the top field 
showed slightly higher NNSE values than the other 
two fields. We hypothesise that these differences 
in seasonal efficiency could be due to the differences 
in topography and size between the fields. Specifi-
cally, the top field is the largest field and has the 
highest elevation and distance from the outlet, while 
the other two fields are less than half its size and 
adjacent to the main surface outflow channel. There-
fore, the most elevated (top) field would accumulate 
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infiltration during wet seasons while subsequently 
releasing part of its storage through the subsurface 
during dry seasons, affecting its soil water storage and 

ET potential. This way, the top field’s ET (Figure 12B) 
and soil water storage (Figure 13) would be strongly 
influenced by seasonal rainfall, while the down-

Figure 11. Statistical moments of the variables
Evapotranspiration (ET) calculated from Bowen ratio: ET_BOW_X; VIs: NDVI/SAVI/EVI_mean_X; precipitation: P_mean_X 
(X stands for the field) at three fields (L: left field; R: right field; T: Top field)
MAM – the spring months (March, April, May); JJA – the summer months (June, July, August); SON – the autumn months 
(September, October, November); DJF – the winter months (December, January, February); NDVI – normalised difference 
vegetation index; SAVI – soil-adjusted vegetation index; EVI – enhanced vegetation index
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Figure 12. Normalised Nash-Sutcliffe index (NNSE) of the variables against evapotranspiration (ET) values from three ET stations
MAM – the spring months (March, April, May); JJA – the summer months (June, July, August); SON – the autumn months 
(September, October, November); DJF – the winter months (December, January, February); NDVI – normalised difference 
vegetation index; SAVI – soil-adjusted vegetation index; EVI – enhanced vegetation index; P – precipitation

Figure 13. Normalised Nash-Sutcliffe index (NNSE) of the variables against soil moisture measurement from the soil water 
storage (SWS) PL144 station
MAM – the spring months (March, April, May); JJA – the summer months (June, July, August); SON – the autumn months 
(September, October, November); DJF – the winter months (December, January, February); NDVI – normalised difference vege-
tation index; SAVI – soil-adjusted vegetation index; EVI – enhanced vegetation index; ET – evapotranspiration; P – precipitation
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stream fields would be far less sensitive to infiltration 
seasonal variations, being recharged through the 
subsurface by their upper neighbour. Consequently, 
the top field’s highest NNSE values would be during 
the summer season, with high variation ranges due 
to changes in precipitation. Accordingly, the top 
field’s subsurface storage would be higher during 
wet seasons, leading to a wetting front within the 
subsurface moving towards the surface outlet. This 
result suggests that both soil storage conditions and 
fields’ sensitivity to recharge (e.g., infiltration) are 
influenced by subsurface morphology, which in our 
case seems to be similar to the surface topography. 
This finding is consistent with analyses performed 
at larger scales (Schiavo 2022; Schiavo et al. 2022) 
and provides a basis for further analysis.

The analysis of efficiency indices can provide in-
sights on the interrelationships between the soil 
water content (employed as an independent variable) 
at varying depths within the root zone (10–20, 30–40, 
and 50–60 cm, respectively), estimated evapotran-
spiration via Bowen Ratio, and precipitation, as well 
as VIs, , across different seasons (Figure 13). From 
panels A–D, we can barely appraise a narrower range 
of variation of efficiency between vegetation indices 
and SWS integrated along the vertical (panel A), with 
that at increasing depths (panels from B to D), par-
ticularly in summer. On the contrary, the variation 
of efficiency between precipitation and increasing-
depths soil water content widens, again, particularly 
in summer. While the former can be related to vary-
ing drying conditions during summer, hence soil 
water content is more related to vegetation indices 
for surficial soil layers, and the latter can be related 
to the infiltration of precipitation, returning slightly 
lower efficiency indices between deeper soil contents 
and precipitation. These considerations strengthen 
our ability to relate different hydrological processes 
to NNSE mutual efficiency and give hints about which 
variables might be more mutually correlated during 
a certain season.

CONCLUSION

In this study, we aimed to evaluate the evapotran-
spiration (ET) of a small agricultural catchment 
using various datasets, including high-resolution 
satellite images, precipitation, vegetation indices 
(VIs), and soil water storage (SWS). Our findings 
suggest a consistent seasonal trend in the variation 
of VIs across all fields, with the highest values re-

corded in spring and summer, and the lowest in au-
tumn and winter due to crop harvesting and sparse 
vegetation. The correlation between ET, SWS, and 
VIs was also found to be strong, with exponential 
functions expressing their correlation within a crop 
growing season. We suggest that VIs may be useful 
in inferring ET or SWS, especially where it is poorly 
monitored. Additionally, our results indicate that the 
subsurface recharge may play a critical role in the 
water balance of the fields we investigated, and it is 
likely influenced by potential gradients of the water 
table and bedrock morphology. Overall, our study 
provides insights into the ET dynamics of a small 
agricultural catchment and highlights the impor-
tance of considering multiple variables in water 
resource management. Nonetheless, we only analysed 
the SWS dynamic from a single field, and we only 
investigated the intercorrelation between variables 
for a one crop season. Thus, future research should 
examine the SWS from various locations within the 
catchment and gather data from multiple crop grow-
ing seasons. In addition, future studies should focus 
on the spatial variability of ET and SWS at a field 
scale using high-resolution satellite images and other 
pertinent datasets.
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