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A B S T R A C T   

Pedotransfer functions (PTF) are widely used in soil hydraulic property modelling. Accounting for spatial 
structures of soil properties for improving the model performance of PTF is increasingly discussed. To understand 
how model performance varies when PTF are trained with samples of different spatial structure of the input data, 
we developed 12 ePTF (ensemble PTF) with data input from differently sized spatial domains to predict field 
capacity (FC) and wilting point (WP) of agriculturally used soils in Austria. The training domains generally had 
diameters equal to or larger than the spatial range of the explaining variables (bulk density BD, organic carbon 
content OC, Sand, Silt, and Clay) and the response variable (FC or WP). A stepwise regression technique was used 
to train the ePTF, and both bootstrap and random sampling were used to evaluate the uncertainties of the various 
ePTF. We found that, a training domain considerably larger than the spatial range of the input variables did not 
help develop a roubust ePTF, particularly when applied on relatively larger scales, independent of their per-
formances during the training stage. We conclude that, covering additional heterogeneous samples from outside 
of the spatial range of the input variables does not ensure an enhanced prediction capability of ePTF. Also, it 
might be worth paying more attention to the spatial structure of the predicted variable when its spatial range 
might be expected to be quite different from the predictors. This would have an implication for guiding sampling 
practices.   

1. Introduction 

Pedotransfer functions (PTF) commonly use readily available soil 
information to estimate soil physical or hydraulic properties (Rawls 
et al., 1982; Tietje and Tapkenhinrichs, 1993; Jian et al., 2021; Van Looy 
et al., 2017; Zhang et al., 2018; Zhang and Schaap, 2019; Sevastas et al., 
2018). However, the application of PTF usually involves uncertainty of 
different types (Mayr and Jarvis, 1999; Chirico et al., 2010; Winter and 
Disse, 2010; Loosvelt et al., 2011, Achieng, 2019). 

An number of studies were dedicated to revealing the shortcomings 
and uncertainties of PTF- prediction propagated into hydrological or 
environmental modelling (e.g. Guber et al., 2009; Deng et al., 2009; 
Chirico et al., 2010; Wösten et al., 2013; Sun et al., 2016; Blanco et al., 
2018; Fathololoumi et al., 2020; Kalumba et al., 2021). Also, whether 
and how the spatial structure of predicted variables are accounted for by 
PTF has been of increasing interest in relevant studies (Nemes et al., 
2009; Liao et al., 2011; Jin et al., 2018; Dobarco et al., 2019; Szabo et al., 
2019; Bourennane et al., 2021). This is because the stationarity 

assumption does not guarantee that PTF properly simulate the spatial 
organization of predicted variables. Furthermore, predictions of PTF 
sometimes were found no spatial correlation with their corresponding 
observations at all (Milne et al., 2005; Pringle and Lark, 2006; Pringle 
et al., 2007; Chirico et al., 2007, 2010). Both Milne et al. (2005) and 
Pringle et al.(2007) used wavelet methods to evaluate the spatial 
structure of PTF prediction, suggesting that spatially non-correlated 
coefficients could not represent the spatial variance of observations at 
particular scales. Using geostatistical analysis tools, Liao et al. (2011) 
compared soil water observations with the predictions simulated by a 
few widely used PTF, suggesting that only some of the investigated PTF 
could simulate the spatial variation of investigated variables. 

The previous studies all underline that established PTF should 
functionally perform well when reflecting the spatial variation of pre-
dicted variables, i.e. dependent variables. However, the results of pre-
vious studies on the importance of the spatial structure of inputs for 
developing PTF are ambiguous. Additionally, it is still unclear whether it 
is necessary to account for the spatial process of target variables in the 
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training process to develop a robust PTF because a locally calibrated PTF 
may not be appropriate for predicting a target variable characterized by 
a large spatial correlation length (Pringle et al. 2007). Working on 
possible causes affecting PTF’s performance and uncertainties, Finke 
et al. (1996) found that the model structure of PTF was less relevant in 
explaining the spatial variation of PTF predictions when compared with 
the spatial variability of input variables. Ye et al.(2007; 2008) suggested 
that uncertainties of PTF predictions could be significantly improved by 
considering the variance of co-kriging variables. Liao et al. (2014a) 
found that the input uncertainty had more influence on PTF prediction 
than parameter uncertainty. Deng et al.(2009) used co-kriging and 
bootstrapping to address spatial variability of inputs and parameter 
uncertainties, respectively, suggesting that using more training samples 
helped to reduce the uncertainty of parameter estimations in PTF 
development. Unlike the previously mentioned analysis, Chirico et al. 
(2007, 2010) suggested that PTF model structure was more influential in 
reducing the uncertainty than the spatial variability of the input dataset. 
They found it unnecessary to measure soil properties at a high spatial 
resolution when developing PTF, underlining the irrelevant role of the 
spatial structure of inputs affecting PTF performance. 

In our analysis, instead of evaluating how PTF simulate spatial 
structures of target variables, we aimed to examine whether accounting 
for spatial structures of input variables (either predictors or predicted 
variables) significantly reduced errors in PTF predictions. We trained 
various PTF based on the samples from different spatial sizes of training 
domains. We hypothesized that it was possible to reduce PTF prediction 
errors by adequately accounting for the spatial range of inputs. Specif-
ically, we aimed to i) understand how the performance of a PTF varied 
when the spatial range of the input variables was not correctly taken into 
account during training stage; and ii) reveal if the spatial range of a 
predicted variable was relevant to develop a robust PTF. 

2. Data and methodology 

2.1. Data availability 

We used a datasets of the soil physical properties provided by the 
Federal Agency for Water Management, Institute for Land and Water 
Management Research, Austria, to develope PTF for predicting the field 
capacity (FC) and wilting point (WP) of soil. This extendible database 
contains information on soil samples collected over the last three de-
cades. Soil samples were taken from different soil profiles mainly 
distributed within the agricultural production area of Austria. Since 
samples from deeper layers were unavailable for some soil profiles, only 
samples of the first two layers were considered during analysis. The first 
layer has an average sampling depth of 15 ± 9 cm (i.e. the bottom 
depths of the sampling cylinders taken for analysis), whilst the second 
one has an average sampling depth of 42 ± 18 cm. By default, a large 
number of soil physical and hydraulic parameters are measured for each 
soil sample. In this analysis, however, we only used soil texture (clay, 
sand, silt), bulk density (BD) and orgainc carbon (OC) as potential 
explanatory variables. FC and WP were obtained from the measurement 
of the retention curves. Soil texture was analyzed according to Austrian 
standards using the pipette method with Na4P2O7.10H2o and H2O2 
(ÖNORM L 1061). Organic carbon was measured using wet or dry 
combustion (ÖNORM1080, 1082). Bulk density was measured accord-
ing to EN-ISO11272; for the measurement of retention curves, we used 
ISO11275. We used samples from 176 soil profiles in our analysis and 
established PTF for layers 1 and 2 respectively. 

2.2. PTF development 

Based on the kriging theory, we hypothesized that samples outside of 
the spatial range would induce more noise, leading to more uncertainty 
in the performance of PTF models. Thus, PTF accounting for the spatial 
structure of variables may perform better than those without accounting 

for spatial structure. To test our hypothesis, we first estimated spatial 
correlation lengths of the input variables using the “gstat” procedure in 
R. Then, we specified several domains of diameters approximately equal 
to the correlation lengths of at least one variables. By using the samples 
from the various domains, we tried to investigate if and how PTF 
behaved when spatial structures of variables were taken into account. 

The spatial distribution of the different samples for analysis of FC is 
displayed in Fig. 1. For the sake of brevity, we did not include the spatial 
distribution for parameter WP, which is almost identical to that of FC. 
Table 1 gives the estimated spatial ranges of the input variables ac-
cording to the analysis of seimvariogram (semivariograms may be found 
in the supplementary material 1). Table 2 shows the statistics of soil 
properties within the domains. ANOVA suggest that for most variables, 
there was no significant difference (p > 0.05) among the training do-
mains for either layer 1 or 2. However, when comparing the trainning 
domains with the application domains, most variables exhibited a sig-
nificant difference for either layer 1 or 2. 

2.3. Random sampling and bootstrapping 

The number of samples involved in developing PTF differed between 
the specified domains (Table 2). This may interfere with identifying the 
role of the spatial structure of input variables. Therefore, for each 
training domain, sample subsets were generated by random sampling in 
R, with the number of the subset sampling equal to the number of 
samples available for the smallest domain. Following Nemes et al. 
(2010), random sampling for each domain was run 20 times. For each 
run, the derived subset of the sampling was subjected to stepwise linear 
regressions, with BD, OC, and soil texture as potential explanatory 
variables, and FC or WP as predicted variables. Accordingly, 20 PTF 
were derived for each domain. 

In order to address parameter uncertainties of each PTF, boot-
strapping was conducted using the “boot” package in R for deriving 
1000 sets of bootstrapped coefficients for each PTF. In total, 20 x1000 
regression coefficients (herein we called bootstrapped PTF) were 
generated for each training domain, constituting ensemble PTF (ePTF). 
The ePTF were subsequently tested in the application domains (AD11 
and AD12 for layer 1, and AD21, AD22, and AD23 for layer 2, 
respectively). 

Random sampling combined with bootstrap allowed us to address 
both input uncertainty (i.e. the training dataset) and parameter uncer-
tainty (i.e. the parameters of PTF) together. 

2.4. Model evaluation and uncertainty analysis 

In total, we obtained 12 ePTF for the specified training domains, 
among which ePTFFC_TD11, ePTFFC_TD12, ePTFFC_TD13, ePTFFC_TD21, 
ePTFFC_TD22, ePTFFC_TD23 were used for predicting FC of layer 1 and 2, 
whilst ePTFWP_TD11, ePTFWP_TD12, ePTFWP_TD13, ePTFWP_TD21, 
ePTFWP_TD22, ePTFWP_TD23 for predicting WP of layer 1 and 2, respec-
tively. The two smallest training domains (i.e. TD11 and TD21) were not 
submitted to random sampling, so each one has only 1000 bootstrapped 
members that constitute their corresponding ePTF. 

Following the method of Cichota et al. (2013), the arithmetic mean 
of the ensemble member predictions was considered the output of each 
ePTF. The average approach could reduce prediction uncertainty simi-
larly to the others (Liao et al., 2014b). Three widely used criteria, root 
mean square error (RMSEePTF), mean error (MEePTF), and standard de-
viation error (SDEePTF) (Schaap, 2004) were used to evaluate the per-
formance of the ePTF in each domain (see equation (1) to (3)). 

MEePTF =
1
N

∑N

i=1

((
1
M

∑M

j=1
Sij

)

− Oi

)

(1)  
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RMSEePTF =
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M
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Sij

)
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)2
√
√
√
√ (2)  

SDEePTF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N

i=1

((
1
M
∑M

j=1
Sij

)

− Oi − MEePTF

)2
√
√
√
√ (3)  

where Sij is the prediction of the jth member PTF (j = 1,2,…,M) of the ith 

soil sample (i = 1,…,N), N represents the total number of soil samples 
within a specific domain, whilst M is taken as 40,000 or 20000; Oi is the 
observation (FC or WP) for the ith soil sample within the domains. 
MEePTF represents the mean prediction error of an ePTF performed in a 
specifc domain, revealing an average tendency for overestimation or 
underestimation (DeVos et al., 2005; Nanko et al., 2014), and being an 
indicator of simulation accuracy of the investigated ePTF. RMSEePTF 
represents the overall performance of a specific ePTF (Chirico et al., 

2007), including both the accuracy error (MEePTF) and the precision 
error represented as SDEePTF (Equation (3)). For a large N, MEePTF

2 / 
RMSEePTF

2 is usually considered the relative contribution of accuracy 
error to the total simulation error within a specified domain (Chirico 
et al., 2007). 

To quantify uncertainties of the ePTF output, we estimated the dis-
tribution of the member PTF performances by using the average and the 
standard deviation of the performance values, denoted as μ(RMSE) and 
μ(ME), and σ(RMSE) and σ(ME), respectively. 

μ(RMSE) =
1
M
∑M

j=1
RMSEj (4)  

μ(ME) =
1
M
∑M

j=1
MEj (5)  

Fig. 1. Sampling distribution for developing PTF to estimate FC of a) layer 1 and b) layer 2, respectively. Different symbols denote the different training domains 
(TD11, TD12, TD13, TD21, TD22, TD23) and the application domains (AD11, AD12, AD21, AD22, AD23). 
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σ(RMSE) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

j=1

(
RMSEj − RMSE

)

M − 1

√
√
√
√
√

(6)  

σ(ME) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

j=1

(
MEj − ME

)

M − 1

√
√
√
√
√

(7)  

where RMSEj and MEj represent the root mean square error and mean 
error, respectively, for the jth member PTF of a specific domain. RMSE 
and ME are the means of the member performances for a specific 
domain. By investigating the patterns of the member performances, it is 
possible to reveal how the performances disperse around their mean 
values. 

The PTF used to generate the member PTF differed in their explan-
atory variables due to the exclusion procedure of stepwise regression. 
Therefore, it was necessary to understand the difference in the explan-

atory variables among the ePTF before assessing their performance for 
different domain sizes. We, thus, roughtly quantified the relative 
importance of each predictor variable (relative importance of value or 
RIVk) of the ePTF by using equation ((8)–(10)), 

RIVk = RIVk × wk (8)  

RIVk =

∑
l=1RIVlk

Nk
(9)  

RIVlk =
tlk

∑
k=1tlk

(10)  

where RIVk represents the relative contribution of the kth variable (k =
1,2,..,6) in the investigated ePTF; tlk is the t value of variable k in a PTF l 
(l = 1,2,…,20; for training domain TD11 and TD21, l = 1), directly taken 
from the stepwise regression procedure, commonly representative of the 
relative importance of a variable in a model. Nk is the total times the kth 

variable appears in 20 PTF; wk is the weight of the kth variable, taken as 
the Nk divided by 20. 

3. Results 

3.1. Comparison of the developed ePTF 

The developed ePTF did not all include the same predictors (Fig. 2) 
partly because of the excluding procedure of the stepwise regression 
technique. However, most ePTF, especially those from the larger do-
mains, used most variables having spatial ranges as predictors, irre-
spective of their RIVk values. For example, BD, Silt and Sand of layer 1, 
exhibiting a spatial range of 108, 161 and 134 km, respectively, were 
involved as predictors in ePTFWP_TD12 and ePTFWP_TD13 (See Fig. 2c), 
although their RIVk values ranged from 0.01 to 004 only. BD and OC of 
layer 2 with a spatial range of between 78 and 109 and 66 and 84 km, 
respectively, were also included in the training ePTFFC_TD22, ePTFFC_TD23 
(Fig. 2b), and ePTFWP_TD23 (Fig. 2d). A few training ePTF of small-sized 
domains did not use the variables having spatial range as the predictor 
variables. For example, the variable BD was not included in ePTFWP_TD11 
(Fig. 2c), even though BD exhibited a spatial range closed to the diam-
eter of the domain TD11 of about 100 km around (Table 2). This failure 
to account for spatial structures of input variables in training PTF may 
have an unfavourable effect on model application or extrapolation. 

Table 1 
Spatial range of the fitted semivariogram models for the variables potentially 
used in PTF.  

Layer Variables Spatial range (km) 

Layer 1 FC 210 
WP 180 
BD 113a;108b 
OC —c 
Clay —c 
Silt 175a; 161b 
Sand 183a;134b  

Layer 2 FC 26 
WP 254 
BD 78a;109b 
OC 66a; 94b 
Clay —c 
Silt —c 
Sand —c 

a: estimated when the samples used for training PTF of FC were applied; 
b: estimated when the samples used for training PTF of WP were applied; 
c: No resultss because the fitting was not convergence or a singular model is 
derived. 

Table 2 
Mean soil properties (±standard deviation) within the domains for training and application of PTF in layer 1 and 2.    

Training Domain    Application domain   

Layer 1 Domain Code_ TD11 TD12 TD13  AD11 AD12   
Radius (km) 55 80 133  55 120   
FC (%) 35.1 ± 4.6a* 35.4 ± 5.5a 36.1 ± 6.1a  33.0 ± 5.4c,a 27.9 ± 6.4d   
WP (%) 17.3 ± 4.3a 17.4 ± 5.0a 17.5 ± 4.8a  18.3 ± 6.0c,a 15.7 ± 5.8d,a   
BD (g.cm− 3) 1.49 ± 0.11a 1.43 ± 0.16ab 1.42 ± 0.18b  1.42 ± 0.12c,ab,b 1.40 ± 0.12c,ab,b   
OC (%) 1.15 ± 0.46a 1.55 ± 1.65ab 1.68 ± 1.68b  1.63 ± 0.52c,ab,b 1.48 ± 0.53c,ab,b   
Clay (%) 22.1 ± 9.8a 21.3 ± 9.1a 20.8 ± 8.8a  18.3 ± 6.2c,a 17.9 ± 6.6c   
Silt (%) 61.2 ± 12.5a 59.7 ± 13.2a 59.3 ± 13.3a  48.6 ± 15.6c 44.4 ± 15.2c   
Sand (%) 16.7 ± 13.4a 18.9 ± 15.1a 19.8 ± 15.1a  33.1 ± 18.8c 37.6 ± 19.4c   
Number of samples (N) 37 (36)** 68 (65) 76 (72)  21 (48) 68 (94)   

Layer 2 Domain Code_ TD21 TD22 TD23  AD21 AD22 AD23  
Radius (km) 25 40 133  25 55 120  
FC (%) 33.3 ± 6.64a 33.3 ± 7.37a 34.4 ± 7.11a  29.6 ± 9.4 cd,a 31.3 ± 9.1d,a 26.7 ± 8.1c  
WP (%) 17.4 ± 5.7a 17.1 ± 5.8a 17.2 ± 6.1a  18.5 ± 7.2 cd,a 19.4 ± 7.2d,a 15.6 ± 7.1c,a  
BD (g.cm− 3) 1.51 ± 0.09a 1.50 ± 0.09a 1.46 ± 1.46a  1.53 ± 0.12c,a 1.52 ± 0.11c,a 1.45 ± 0.11d,a  
OC (%) 0.45 ± 0.32a 0.49 ± 0.31a 0.79 ± 0.57b  1.04 ± 0.53c 0.94 ± 0.56c 0.93 ± 0.57c,b  
Clay (%) 24.2 ± 10.3a 24.2 ± 11.5a 22.1 ± 10.9a  19.1 ± 7.9c,a 20.8 ± 8.9c,a 17.9 ± 8.4c  
Silt (%) 57.6 ± 11.9a 56.9 ± 12.8a 56.7 ± 13.5a  44.0 ± 18.0c 46.0 ± 17.6c 45.0 ± 15.9c  
Sand (%) 18.2 ± 18.2a 18.8 ± 18.8a 21.2 ± 18.6a  36.9 ± 24.3c 33.2 ± 23.9c 37.1 ± 21.6c  
Number of samples (N) 26 (26) 35 (35) 73 (70)  16 (30) 21 (45) 67 (90) 

*: Values with the same letter indicate insignificant differences (p > 0.05); 
**: Values in brackets refer to the numbers of samples used for developing PTFs of WP. 
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3.2. Performance of the ePTF during training stage. 

3.2.1. FC 
Performance of the traind ePTF to predict FC of layer 1 gradually 

declined as the size of the training domain increased. The best results 
were obtained from the smallest domain of TD11 (Fig. 3a), with 
RMSEePTF and MEePTF values being 2.94 and 0.06, respectively. The 
ePTFs from the other two domains (TD12 and TD13) performed differ-
ently, even though their soil properties were quite similar (Table 2), 
with RMSEePTF values being 2.98 and 3.36, respectively (Fig. 3b and 3c). 
For layer 2, the best ePTF to predict FC was from the largest domain of 

TD23 (Fig. 3f), with RMSEePTF and MEePTF being 3.35 and − 0.19, 
respectively, generally better than ePTF of the other domains. Again, the 
similar soil properties between the training domains of TD22 and TD23 
(Table 2) did not ensure a similar performances of the ePTFFC_TD22 and 
ePTFFC_TD23. 

3.2.2. WP 
Unlike the ePTF for FC, the best ePTF to predict WP in both layers 

were all from the relatively small domains TD11 and TD22, with 
RMSEePTF and MEePTF being 2.53 and 0.02 for ePTFWP_TD11 (Fig. 4a), and 
2.70 and − 0.26 for ePTFWP_TD22 (Fig. 4e). 

Fig. 2. RIV for the variables of the trained ePTF for layer 1 (a and c) and 2 (b and d). The ePTF of a) and b) are used for predicting FC, while the ePTF of c) and d) are 
used for predicting WP. Blue columns indicate variables with spatial range, grey columns denote variables without spatial range. 

Fig. 3. Estimated FC from ePTF against their measurements within the training domains of layer 1: TD11 (a), TD12 (b), TD13 (c), and the training domains of layer 2: 
TD21 (d), TD22 (e), and TD23 (f), respectively. The points are representative of the samples within each specific domain. FC was estimated with ePTFFC_TD11, 
ePTFFC_TD12, ePTFFC_TD13, ePTFFC_TD21, ePTFFC_TD22, and ePTFFC_TD23, respectively. 
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3.3. Performance of the trained ePTF in the application domains 

3.3.1. Prediction of FC 
The performance of the trained ePTF to predict FC of the application 

domains is given in Table 3. Interestingly, most of the well-performing 
ePTF during the training stage did not perform well during the appli-
cation stage. For layer 1, the ePTFFC_TD11 performed well in the appli-
cation domain of AD11, better than the ePTFFC_TD12 and ePTFFC_TD13. 
However, with increasing the size of the application domain (AD12), it’s 
performance declined considerably (Table 3). For layer 2, the best- 
performing ePTFFC_TD23 during training stage did not excel in any of 
the three application domains. Instead, for the domains AD21 and AD22, 
ePTFFC_TD22 was performing best, whilst it was ePTFFC_TD21 in the largest 
domain AD23 (Table 3). Although most soil properties of the domain 
TD22, for example, the variables of OC, Silt, and Sand (Table 2), were 
different from those of AD21 and AD22, the ePTFFC_TD22 from domain 
TD22 showed a robust prediction capability in the domains AD21 and 
AD22. While the soil properties differed between the domains TD21 and 
AD23, the ePTFFC_TD21 performed well when it was applied to the 
application domain AD23. 

3.3.2. Prediction of WP 
Similar to the prediction of FC, the ePTF that best predicted WP 

during the traning stage did not perform best in either of the application 
domains (see Table 4). For layer 1, the ePTFWP_TD11 did not behave as 
well as expected, although it had performed best during the training 
stage. Instead, the best-performing ePTF was ePTFWP_TD13 in the appli-
cation domain AD11, with RMSEePTF and MEePTF values of 4.49 and 
− 1.07 (Table 4). In the domain AD12, the ePTFWP_TD12 behaved best, 
with RMSEePTF and MEePTF values of 4.16 and 0.30, respectively. For 
layer 2, the ePTFWP_TD23 performed best in all three application domains, 
although this ePTF had a relatively poor performance during the 
training stage. The RMSEePTF of the ePTFWP_TD23 in the domains AD21, 
AD22, and AD23 were 4.04, 4.65, and 4.14, and the MEePTF were − 1.64, 
− 2.19, and 0.20, respectively (Table 4). Again, although most soil 
properties showed a significant difference between the training and the 

application domains (Table 2), this did not impair the prediction capa-
bility of the ePTF at the application stage. 

3.4. Uncertainty of the ePTFs predictions 

3.4.1. FC 
Fig. 5 shows the ensemble members’ performance patterns to predict 

FC. The ensemble members developed from layer 1 had μ(RMSE) values 
ranging from 4.42 to 5.59 in the domain of AD11 (Fig. 5b), a magnitude 
similar to the one reported by Chirico et al.(2007). Whilst the domain of 
AD12 had the μ(RMSE) values that ranged from 7.25 to 8.23 (Fig. 5b), 
indicating an increased prediction errors as the application domains 
expanded. The σ(RMSE) values of the ensemble members ranged from 
0.50 to 1.06 in AD11, and 1.02 to 1.57 in AD12 respectively, all 
considerably smaller than the magnitudes of their corresponding 
μ(RMSE) values, suggesting less uncertainty with their performances. 
Further looking into the sources of the errors of the performances, the 
prediction errors of the members in domain AD11 were mainly due to 
smaller precisions because the ME2/RMSE2 values were lower than 0.1. 
In contrast, the larger domain AD12 exhibited accuracy errors that 
accounted for half of the total errors, with a ME2/RMSE2 being 0.5 
(Fig. 5c). 

The σ (RMSE) value of the best performing ePTFFC_TD11 in AD11 was 
0.5, increasing by two times in AD12. In contrast, the ePTFFC_TD12 had a 
σ(RMSE) value increase by 71% from AD11 to AD12. The differentiation 
of these uncertainties reveals the different prediction capabilities or the 
shortage of the two ePTFs in certain situations. We mainly ascribe the 
varying performance of the ePTF in the application domains to the de-
gree to which the training ePTF accounted for the information on the 
spatial strucutre of variables. The varibles BD, Silt, and FC of layer 1 
exhibiting spatial ranges were involved as predictors of the ePTFFC_TD11 
(Fig. 2a). However, the ePTFFC_TD11 was only trained with locally clus-
tered samples of FC and Silt. This means that the training domain of 
TD11 was shorter than the spatial ranges of FC and Silt. The information 
about the spatial structure of both FC and Silt, thus, were not fully 
addressed in the ePTF. Therefore, the members of ePTFFC_TD11 behaved 

Fig. 4. Estimated WP from ePTF against their measurements within the training domains of layer 1: TD11 (a), TD12 (b), TD13 (c), and the training domains of layer 
2: TD21 (d), TD22 (e), and TD23 (f), respectively. The points are representative of the samples within each specific domain. WP was estimated with ePTFWP_TD11, 
ePTFWP_TD12, ePTFWP_TD13, ePTFWP_TD21, ePTFWP_TD22, and ePTFWP_TD23, respectively. 
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better only when it was tested in a relatively small size domain AD11. 
The increased value of σ(RMSE) of the ePTFFC_TD11 ranging from 0.5 in 
AD11 to 1.0 in AD12 illustrates this defect of the ePTF when extrapo-
lated into a large application domain. 

The ePTFFC_TD12 includes most spatial variables (FC, BD,Silt, and 
Sand). Nevertheless, most training samples were from the domain with a 
diameter close to the spatial range of Silt, Sand and FC (160 km). 

Therefore it possibly performed robustly, especially when applied to a 
relatively large testing domain (for example, AD12), where the 
requirement of accounting for the spatial structure of variables is more 
stringent to obtain an accurate spatial representation of soil properties 
(e.g. Pringle et al., 2007; Szabo et al., 2019; Bourennane et al., 2021). 
The small increase of σ(RMSE) value of ePTFFC_TD12 when altered from 
AD11 to AD12 confirmed its relative stable capability of extrapolation 

Table 3 
Performance of the ePTF to predict FC of the application domains.  

Layer 1 ePTF AD11  AD12        

RMSEePTF MEePTF RMSEePTF MEePTF      

ePTFFC_TD11 4.21 0.58 7.33 5.29      
ePTFFC_TD12 4.49 0.64 7.06 5.12      
ePTFFC_TD13 5.28 1.62 8.03 6.13      

Layer 2 ePTF AD21  AD22   AD23     
RMSEePTF MEePTF RMSEePTF MEePTF  RMSEePTF MEePTF   

ePTFFC_TD21 4.26 − 1.01 4.73 − 1.80  4.86 1.82   
ePTFFC_TD22 4.13 − 0.79 4.25 − 1.42  5.15 2.46   
ePTFFC_TD23 4.59 0.12 4.41 − 0.63  7.09 4.43   

Table 4 
Performance of the ePTF to predict WP of the application domains.  

Layer 1 ePTF AD11  AD12      

RMSEePTF MEePTF RMSEePTF MEePTF    

ePTFWP_TD11 4.92 − 1.93 4.23 − 0.37    
ePTFWP_TD12 4.57 − 1.63 4.16 0.30    
ePTFWP_TD13 4.49 − 1.07 4.33 0.93    

Layer 2 ePTF AD21  AD22  AD23    
RMSEePTF MEePTF RMSEePTF MEePTF RMSEePTF MEePTF  

ePTFWP_TD21 5.08 − 3.43 5.86 − 4.08 4.65 − 1.83  
ePTFWP_TD22 5.08 − 3.50 5.86 − 4.13 4.62 − 1.87  
ePTFWP_TD23 4.04 − 1.64 4.65 − 2.19 4.14 0.20  

Fig. 5. Boxplots of the ePTF performance to predict FC in application domains of layer 1 (a, b, and c) and layer 2 (d, e, and f). Performance was evaluated in terms of 
ME (a,d), RMSE(b, e), and ME2/RMSE2 (c,f). 
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compared to the ePTFFC_TD11. Dissimilarities of the dataset between the 
training and application domains were not mainly responsible for the 
performance of an ePTFs. More details will be given in section 4.2. 

The ePTF to predict FC of layer 2 have showed less uncertainties 
(Fig. 5e), the σ(RMSE) values ranging from 1.04 to 1.84, considerably 
less than the magnitude of the μ(RMSE) values ranging from 5.18 to 
7.73. Both μ(RMSE) and σ(RMSE) values of the ePTFFC_TD21 were lower 
than those of the other ePTF in either of the domains, suggesting its 
robust prediction capability despite its worse performence during the 
training stage. Again, soil properties in terms of FC and Sand (the pre-
dicted variable and the predictor of the ePTFFC_TD21, respectively) were 
significantly different between the domain TD21 and the application 
domains AD21 and AD23 (Table 2). We mainly ascribe the robust per-
formance of the ePTF to the fact that the diameter of the training domain 
of TD21 was close to the spatial range of FC (being 50 km and 25 km, 
respectively). Thus, the samples used for training the ePTFFC_TD21 are 
representative of its spatial organization. It was noted that both BD and 
OC of layer 2 were not involved in training ePTFFC_TD21 (Fig. 2b) even 
though they displayed apparent spatial ranges. This suggests that a 
sampling practice with only a small sampling domain was probably 
sufficient to deal with the issues of spatial variability, if a small spatial 
ranges characterized the target variable of a PTF. For ePTFFC_TD22 and 
ePTFFC_TD23, most variables (i.e. FC, BD, and OC) exhibited spatial range 
and were involved in the training process (Fig. 2b). However, including 
sample data from outside of their spatial range is likely to expose their 
limits when the trained ePTFs were extrapolated to large size of do-
mains. This is especially true for the ePTFFC_TD23 because μ(RMSE) and 
σ(RMSE) of this ePTF increased by 40% and 19%, respectively when the 
application domain expanded from AD21 to AD23. 

3.4.2. WP 
Similar to the results for FC, the ePTFs to predict WP of layers 1 and 2 

also showed less uncertainty with σ(RMSE) values ranging between 0.32 
and 0.75, which is considerably smaller than the magnitude of the 
μ(RMSE) values of between 4.36 and 5.95 (Fig. 6). The main cause of 

error for the ePTF of layer 1 was due to precision because the ME2/ 
RMSE2 ranged from 0.03 to 0.15 (Fig. 6c). In contrast, for layer 2, the 
accuracy error accounted for around half of the total errors in the do-
mains AD21 and AD22. In the largest domain AD23, the precision error 
dominated the total errors (Fig. 6f). Among the ePTF of layer1, the 
ePTFWP_TD13 performed best in the application domain of AD11, but it 
had a largerσ(RMSE) than the other ePTFs. Its performance decreased in 
the application domain AD12 (Fig. 6b). In contrast, the ePTFWP_TD12 
showed relatively stable performance, the μ(RMSE) values in the 
domain AD11 and AD12 being 4.76 and 4.43, and the σ(RMSE) value 
decreasing by 40% when the domain changed from AD11 to AD12 
(Fig. 6b). For layer 2, the ePTFWP_TD23 consistently behaved well in all 
domains; its σ(RMSE) value outperformed the other ePTFs when the 
domain changed from AD21 to AD22 or to AD23 (Fig. 6e). This suggests 
a robust prediction capability of the ePTF. 

These results suggest that the varied performance of the ePTF for 
predicting WP was mainly associated with the representativeness of the 
samples regarding the spatial structure of input variables. The relatively 
poor behaviuor of the ePTFWP_TD11 in either of the applicatino domains 
of layer 1 was mainly due to the training sampling from the domain with 
a diameter of 100 km (See Table 2), considerably smaller than the 
domain of either Silt or WP, their spatial ranges being 160 ~ 180 km 
approximately (See Table 1). Thus, information about spatial strucutre 
of these variables was not fully addressed during training stage. In 
contrast, the members of ePTFWP_TD12 used a training sample that 
correctly represented the apparent spatial organization (Fig. 2c), 
because the sampling diameter of the training domain TD12 (being 
around 160 km) were close to the spatial range (around 130 ~ 180 km) 
of most input variables (i.e. Silt, Sand, and WP). This led to a better 
performance of ePTFWP_TD12 particularly when applied to a larger 
domain. As for the performance of ePTFWP_TD13, the training samples 
were partially located outside of the input variables’ spatial range (WP, 
BD, Silt, and Sand, see Fig. 2c). This may be the reason for a decreasing 
performance when applied in a larger application domain. Compared 
with the other two ePTF, the relatively smaller errors of ePTFWP_TD13 in 

Fig. 6. Boxplots of the ePTF performance to predict WP in application domains of layer 1 (a, b, and c) and layer 2 (d, e, and f). Performance was evaluated in terms of 
ME (a,d), RMSE(b, e), and ME2/RMSE2 (c, f). 
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the domain of AD11, in terms of ME2/RMSE2 (0.07, see Fig. 6c), suggests 
that neglecting spatial structure may be only beneficial to improve the 
accuracy error in a small-scale application area, but not the precision 
error. 

The sampling domain for ePTFWP_TD23 had a diameter similar to the 
spatial range of WP, properly accounting for the spatial structure of WP. 
Therefore, ePTFWP_TD23 outperformed ePTFWP_TD21, ePTFWP_TD22 for 
which the spatial structure of WP was not fully taken into account during 
training. 

4. Discussion 

4.1. Influence of potential processes or factors on examining the spatial 
structure of soil properties 

Most PTF studies have commonly been carried out on hillslopes with 
a spatial resolution of the order of meters (Parker et al., 2012; Takagi 
and Lin, 2012; Martini et al, 2015). Terrain or topography effects on 
spatial organizations were often addressed in such analysis (Takagi and 
Lin, 2012; Tromp Van Meerveld and Mcdonnell, 2006). However, this 
does not imply that a regional scale analysis with coarse sampling 
density is not valid (Annabi et al., 2017). The spatial structure of most 
soil properties is usually controlled by several surface and subsurface 
processes or factors simultaneously, and these controls commonly exert 
their influences at different scales. For example, the spatial structure of 
soil organic carbon is often controlled by a climatic variation on the 
regional scale, while it is controlled by topographic factors on a hillslope 
scale (K. Yoo, et al., 2006). Soil texture of the surface or subsurface layer 
may be mainly controlled by terrain or topography effects on a field 
scale, whilst for deeper layers, it is mainly controlled by parent material 
on the regional scale (Ließ et al., 2012). For the case of soil moisture, 
Martini et al.(2015) and Takagi and Lin (2012) have shown that the 
spatial structure of soil moisture differed between layers, controlled by 
different processes at various scales. We thus assume that it is reasonable 
to investigate subsurface process and management controls on spatial 
structure of soil properties, although the sampling density has an order 
of magnitude of kilometers. Because most soil profiles of our analysis 
were mainly located in the agricultural production area, they are 
commonly featured with gentle slopes or flat topography. Thus, we as-
sume that the terrain-controls on spatial organization of surface soil 
properties were also minimal. The examined soil properties in either 
layer 1 or 2 commonly exhibited a large spatial ranges (See Table 1), 
which has actually reinforced our assumptions. 

4.2. Relevance of adequately addressing the spatial structure of soil 
properties in PTF development 

In line with Pringle et al.(2007) and Deng et al. (2009), in which 
accounting for the spatial structure of soil properties was highlighted to 
improve the prediction capability of PTF, we found that ePTF could 
perform well if they were trained with the samples from domains that 
are characterized by their diameters approximately equal to the spatial 
range of soil properties. This was independent of their performance 
during the training stage. Whilst more and more analysis paid attention 
to increasing sampling density and extending sampling domains using 
novel sensing techniques (e.g. Van Looy et al., 2017; Loiseau et al., 2019; 
Pinnington et al., 2021), we found that covering more additional het-
erogeneous samples to train ePTF did not guarantee to enhance the 
precision of the predictions. This is because total prediction errors 
increased and the performance decreased accordingly, especially when 
ePTF were applied to a relatively large application domain. Several of 
our ePTF illustrate the intereference of heterogeneous information on 
their performance. For example, the ePTFFC_TD13 took into account all 
the spatial variables (including BD, Silt, Sand, and FC) in the training 
process. However, the spatial range of these soil properties (approxi-
mately 112 ~ 209 km) was considerably smaller than the training 

domain TD13 with 266 km which affected the ePTFFC_TD13 and 
decreased its perofrmance when compared with other ePTFs. Both 
ePTFFC_TD23 and ePTFWP_TD13 also showed these effects when applied to 
the application domains AD23 and AD12, respectively. The μ(RMSE) 
value of ePTFFC_TD23 in the domain AD23 was as high as 7.73 (Fig. 5b), 
and the μ(RMSE) value of the ePTFWP_TD13 in domain AD12 was 4.57 
(Fig. 6b). Both relate to the incomplete accounting for the spatial range 
of soil properties. 

We also found that fully accounting for the spatial range of variables 
helps enhance the prediction capability of PTF. This finding is in line 
with Finke et al. (1996) and Deng et al.(2009), who suggested that the 
spatial structure of basic soil properties need to be fully considered to 
model a variable’s spatial pattern. The performance of the ePTFFC_TD11 
degraded in the application domain of AD12 well demonstrates this 
point. The training samples of ePTFFC_TD11 only partially represent the 
information on the spatial structure of the variables FC and Silt.This led 
to a reduced prediction capability of the ePTF when applied to a large 
testing domain dataset. 

It was noted that the sampling resolution was found playing a minor 
role in regulating the uncertainty of a PTF compared to model structure 
(Chirico et al., 2007). This was different from our analysis. We mainly 
ascribed the discrepancy of the results to the different sampling strate-
gies. That is, data samples in the work of Chirico et al. (2007, 2010) were 
purposely taken at spaces smaller than the correlation lengths of the 
observed data, and the PTF were evaluated without accounting for the 
effects of various spatial variograms on its prediction uncertainty 
(Chirico et al., 2007). In our analysis, the data samples were taken from 
domains of different size at different spaces, and the samples used for 
training the equations carried a different degree of informations about 
the spatial structure of the inputs. Therefore, we, believe it important to 
adequately adress the information concerning the spatial structure of 
variables in training PTF, especially when applied to a large-scale 
prediction. 

4.3. Is similarity/dissimilarity of soil properties important for PTF 
extrapolation? 

One may argue that similarity/dissimilarity of soil properties was 
probably the dominant factor in explaining the performance of the ePTF. 
However, after examining the statistical difference between the soil 
properties, we found that similarity/dissimilarity between datasets was 
not responsible for the performance of the developed ePTF, probably 
partially because of the limited number of samples exposed to examine. 
Although, for instance, most of the soil properties were significantly 
different (p < 0.05) between the training domain TD12 and the appli-
cation domain AD12 (Table 2), the ePTFFC_TD12 exhibited good perfor-
mance in the application domain of AD12. Also, most of the soil 
properties of the domain TD11 were significantly different from those of 
AD11 (Table 2), and the developed ePTFFC_TD11 showed satisfactory 
performance in the application domain AD11. In analogy, the soil 
properties between the training domains TD22 and TD23 were similar 
(See Table 2). However, the ePTFFC_TD22 and ePTFFC_TD23 did not present 
similar performances during the training stage. These all suggest that 
similarity/dissimilarity of soil properties is not the sole determinant of 
the performance of PTF extrapolation. 

It should be noted that, whilst similarity/dissimilarity between 
datasets was found irrelevant in our analysis, it does not follow that 
regional or global PTF training is not meaningful. Instead, we underline 
that taking spatial structure into account in the training process is sup-
plementary to similarity/dissimilarity of soil properties to derive robust 
ePTF. As several studies (Van Looy et al.,2017; Nemes, 2015) suggest 
that, it is the similarity/dissimilarity of the datasets, as well as the un-
derlying relation of soil properties, that determine whether a PTF per-
formes well. Therefore, we suggest that besides the first-order and 
second-order statistics, the underlying spatial structure of soil proper-
ties need to be considered as well. 
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4.4. Potential influence of the spatial structure of the predicted variable 

While the spatial structure of input soil properties is commonly 
considered, the relevance of the spatial structure of a response variable 
in a PTF has rarely been investigated. We previously underline the 
importance of adequately addressing the spatial range of explanatory 
variables to improve PTF prediction. However, that was meaningful 
only when the spatial range of the predicted variable and predictors 
were close each other. When their spatial ranges differed greatly, it was 
also worth considering the spatial range of the response variable. Two of 
our ensemble models (including ePTFWP_TD23 and ePTFFC_TD21) may 
demonstrate this relevance. For example, the spatial range of both 
predictors of BD and OC of layer 2 was quite different from that of WP, 
being 109, 94, and 254 km, respectively (Table 1). The training samples 
of WP for training ePTFWP_TD23 well characterized the spatial organi-
zation of WP. The complete information on the spatial structure of WP 
supported the performance of the ePTFWP_TD23 in either of the applica-
tion domains (See Fig. 6e), although heterogeneous samples of BD and 
OC were involved in training the ePTF. As such, the training domain of 
TD21 had a diameter of 50 km, approximately equal to the spatial range 
of FC. Though none of the spatial variables of layer 2 was involved as 
predictors of the ePTFFC_TD21, it performed best in most of the applica-
tion domains AD21 and AD23 (Fig. 5e). Both ensemble models well 
illustrate the relevance of accounting for spatial range of a response 
variable in PTF development. 

We underline that it might be necessary to investigate the spatial 
organization of a predicted variable before developing PTF. If the 
investigated response variable exhibits a relatively larger spatial corre-
lation length than then predictors, it may be worth taking additional 
samples to address spatial variability of a response variable adequately. 
This would be helpful for enhancing the prediction capability of a 
model, irrespective of the scale of the application area. If the investi-
gated variable had a relatively small spatial range compared to the 
predictors, it might be sufficient to develop robust PTF by training 
clustered samples within a relatively small training domain only. That 
would be greatly beneficial to minimize the sampling task. 

5. Conclusions 

It is increasingly required to consider the spatial structure of input 
variables when training a PTF (e.g. Finke et al., 1996; Pringle et al.2007; 
Deng et al., 2009; Nemes et al., 2009; Liao et al. 2011). To understand 
how PTF performance is influenced by considering spatial ranges of the 
input variables to different degree, we trained various ePTF by taking 
samples from a few artificially specified training domains with di-
ameters equal to or larger than the spatial range of the input variables. 
We applied these ePTF to various application domains to examine their 
performances and robustness. Both bootstrapping and random sampling 
procedures were employed to address uncertainties of the ePTF 
predictions. 

We found that for predicting FC or WP, once heterogeneous samples 
from outside of the spatial range of the variables interfered with the 
training process, the trained ePTF commonly exhibited a decreased 
model performance. We also found that ePTF properly accounting for 
spatial range of the predicted variable during the training process was 
conducive to improving model performance, especially when the 
magnitude of the spatial range of the predicted variable were consid-
erably different from those of the predictors. 

We concluded that taking additional samples from outside the spatial 
range of variables for training ePTF may not be favourable to enhancing 
its prediction capability, independent of the investigated scale. Addi-
tionally, when the magnitude of the spatial range of the predicted var-
iable was expected to be considerably different from those of the 
predictors, it may be necessary to account for the spatial range of the 
predicted variable as well in training PTF. 
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