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Ecosystem productivity has a stronger influence
than soil age on surface soil carbon storage across
global biomes
César Plaza 1✉, Pablo García-Palacios1, Asmeret Asefaw Berhe 2, Jesús Barquero3, Felipe Bastida4,

G. Kenny Png5,6, Ana Rey7, Richard D. Bardgett5 & Manuel Delgado-Baquerizo 8,9✉

Interactions between soil organic matter and minerals largely govern the carbon seques-

tration capacity of soils. Yet, variations in the proportions of free light (unprotected) and

mineral-associated (protected) carbon as soil develops in contrasting ecosystems are poorly

constrained. Here, we studied 16 long-term chronosequences from six continents and found

that the ecosystem type is more important than soil age (centuries to millennia) in explaining

the proportion of unprotected and mineral-associated carbon fractions in surface soils across

global biomes. Soil carbon pools in highly productive tropical and temperate forests were

dominated by the unprotected carbon fraction and were highly vulnerable to reductions in

ecosystem productivity and warming. Conversely, soil carbon in low productivity, drier and

colder ecosystems was dominated by mineral-protected carbon, and was less responsive to

warming. Our findings emphasize the importance of conserving ecosystem productivity to

protect carbon stored in surface soils.
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Surface soil carbon (C) in the form of organic matter sup-
ports essential ecosystem services such as climate regula-
tion, plant production, nutrient cycling and water storage

and purification1–5. Global data show that soil C content is larger
in cold and mesic than in warm and xeric ecosystems6. Moreover,
we know that soil C often accumulates during the first thousands
of years of ecosystem development7, and declines during eco-
system retrogression over millennia8. Soil C gains and losses are
driven by intertwined changes in primary productivity and sta-
bilization and destabilization processes, which in turn are in part
governed by the interaction of soil organic matter with
minerals1,9. Specifically, the long-term preservation of soil C is
mediated by occlusion within aggregates and by the formation of
organo-mineral associations10,11, which limit the accessibility of
microorganisms and their extracellular enzymes to the organic
substrates and increasing energy requirements for
respiration9,12–14. Thus, the mineral-associated C fraction of soil
organic matter may be less vulnerable to microbial decomposi-
tion, and consequently to warming-induced-increases of micro-
bial respiration, than the particulate and free light C fractions,
which are largely unprotected by minerals15–17.

The mineral control of soil C accumulation and loss has been
highlighted in recent studies across large temporal11,18,19 and
spatial gradients20,21. For example, studies conducted on single
chronosequences in Hawaii and California have found positive
relationships between soil C and mineral reactivity, and suggested
that weathering first increases and subsequently reduces the
potential of soil to stabilize C9,19. This pattern is particularly
evident in soils where short-range order and non-crystalline
minerals form in relatively large amounts22–24. Despite these
important advances, we still lack a comprehensive understanding
of how, why and to what extent the mineral protection of C
(assessed by the proportion of soil C in mineral-associated vs. free
fractions) changes as soil develops over centuries to millennia
across different ecosystems. Such fundamental knowledge is
crucial to improve our understanding of soil C storage and
turnover over large spatiotemporal scales, reduce uncertainties in
the representation of soil processes in land C models, and ulti-
mately shape land management strategies to foster the multiple
ecosystem services of soil organic matter, including climate reg-
ulation. Most studies to date on this topic have been based on
single chronosequences9,19,25,26. Here, we advance on this by
exploring the major drivers of soil organic C fractionation as soil
develops across 16 globally distributed soil chronosequences from
contrasting ecosystems. The objective of this work was to deter-
mine how and why the amount and the proportion of surface
(0–10 cm) soil C stored in different organic matter fractions
changes during soil development across biomes.

These chronosequences cover a range of parent material (vol-
canic material, sedimentary rocks, and sand dunes) and ecosys-
tems (from deserts to tropical forests and croplands;
Supplementary Fig. 1 and Supplementary Data 1)27. Within each
soil chronosequence, we selected four to six stages ranging from
hundreds to millions of years sharing similar parent material and
climate. We applied a density-based, soil organic matter fractio-
nation to separate and quantify soil organic C content in three
distinct fractions based on their association with minerals: free
light fraction (not protected by minerals); occluded light fraction
(protected by occlusion within aggregates); and mineral-
associated fraction (protected by sorption to minerals)28. Using
this information, we calculated the proportion of organic C stored
in each fraction in relation to the total organic C content (pro-
portion of organic C fraction i= organic C fraction i content ×
100/sum of all organic C fraction contents). We focused on the
surface soil (top 10 cm, after removing any litter/plant debris on
the soil surface) because it is the most biologically active layer and

the most exposed to environmental factors, as well as because the
surface soil C is especially relevant to support soil functioning and
multiple environmental services1,29. This sampling depth is also
consistent with previous studies on soil C storage across spatio-
temporal scales19,21,30. Additional details on methods are in
Appendix S1: Section S1.

Results and discussion
Changes in C fractions during soil development. Total C stocks
in the surface soil were generally largest in grasslands and forests,
specifically in temperate and tropical regions (Supplementary
Fig. 2). Moreover, soil C stocks in these ecosystems generally
tracked a hump-shaped relationship with soil age, with the largest
stocks occurring at intermediate stages of soil development
(Supplementary Fig. 2). This relationship agrees with results from
single-chronosequence studies on soils relatively dominated by
short-range order and non-crystalline minerals9,18,19,22,23. We
further show that the free light and mineral-associated fractions
consistently dominated the soil C stocks across chronosequences
(Fig. 1 and Supplementary Fig. 3), while the occluded light
fraction only represented a minor part (less than 10% on average
across chronosequence sites). Because of this, we focused on the
free light and mineral-associated C fractions for downstream
analyses. We also focused our discussion mainly on the propor-
tion of soil C stored in each fraction rather than changes in
stocks, because the quantification of the latter would require no
changes in soil bulk density through time31, and this condition
was not met in our chronosequences.

Our data revealed that while the mineral protection of soil C
differed vastly across ecosystems, it changed to a much lesser extent
during soil development within each chronosequence (Fig. 1). In
fact, these results were confirmed by linear mixed-effects modeling
(see Methods for details), which revealed that ecosystem
productivity significantly alters the proportion of organic C in
the free light (p= 0.002) and mineral-associated (p= 0.005)
fractions across chronosequences but soil age class (i.e., thousands
of years, hundreds of thousand years and millions of years) does
not (p > 0.05; Supplementary Fig. 4). In particular, warm and wet
tropical and temperate (e.g., subtropical and Mediterranean)
ecosystems (often forests) had a consistently larger proportion of
free light relative to mineral-associated C fraction irrespective of
soil age (7/8 chronosequences, 35/45 plots; Fig. 1 and Supplemen-
tary Fig. 3). These tropical and temperate ecosystems also had
relatively larger contents of soil organic C (Supplementary Figs. 2, 3
and 5). In contrast, in arid and cold ecosystems with less primary
production (e.g., desert shrublands), most organic C was stored in
the mineral-associated fraction (7/8 chronosequences and 29/42
plots; Fig. 1 and Supplementary Figs. 2, 3 and 5). The
chronosequences from Arizona (AZ) and Hawaii (HA) illustrate
the point that mineral protection of surface soil organic C varies
more between than within ecosystems as soil develops from
centuries to millennia. Both forest ecosystems are on volcanic
substrates and developed over the same period (3–4 million years),
yet the semiarid ecosystem from AZ is, on average, dominated by
the mineral-associated C fraction (56%), while the tropical
ecosystem from HA is permanently dominated by the free light
fraction (average proportion of mineral-associated C <2%; Fig. 1
and Supplementary Data 1). Similarly, cold grasslands from
Colorado (CO), which developed over millennia on sedimentary
substrates, were dominated by the mineral-associated C fraction
(61%), while comparable, but warmer, ecosystems from California
(CAL) were dominated by the free light fraction (35% of mineral-
associated C on average; Fig. 1 and Supplementary Data 1).

The C distribution found in two soil chronosequences
contrasted with the cold and arid vs. warm and wet ecosystem
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pattern regarding the dominance of C stored in the mineral-
associated vs. free light organic matter fractions. In particular, soil
C in the chronosequence located in a highly productive
continental forest in North America (MI, 10 plots) was
predominantly stored in free light organic matter, rather than
in the mineral-associated organic matter fraction as was found in
the other cold ecosystems (Fig. 1 and Supplementary Fig. 3).
Conversely, soil C contents of a subtropical soil chronosequence
cropped with tea for the last 100 years in an area naturally
dominated by broad-leaved evergreen forests in Taiwan (TA, 4
plots)32 were much smaller (Supplementary Fig. 2) than those
found in other productive and warm ecosystems (e.g., Queens-
land, QL, Mexico, MEX, and Hawaii, HA; Supplementary Fig. 2),
and were also dominated by mineral-associated rather than free
light organic matter fractions (Fig. 1 and Supplementary Fig. 3).
Overall, these local contingencies lend support to the global
pattern reported here, supporting the importance of free light
organic matter as a dominant C pool in the soil of undisturbed
forest ecosystems. In addition, these results suggest that land use
conversion of broad-leaved evergreen forest to agriculture in the
TA chronosequence altered the millennial balance of C contents,
resulting in relevant losses of unprotected C fractions from
the soil.

The proportion of surface soil C stored in free light organic
matter was positively correlated with microbial respiration rates,
whereas the opposite was found for the proportion of mineral-
associated C (Fig. 2). An additional experiment across a subset of
eight chronosequences that represented all the major biomes

examined here revealed a positive relationship between the
proportion of C stored in the free organic matter fraction and the
temperature sensitivity of soil respiration (i.e., evaluated with the
Q10 coefficient as the increase in soil respiration with a
temperature increase of 10 °C; Fig. 2).

Together, these findings suggest that surface soil C dominated
by the free C fraction, mainly associated with temperate and
tropical ecosystems in our chronosequence network, is relatively
more vulnerable to microbial decomposition and dependent on
temperature increases. This is consistent with recent observations
demonstrating a surprisingly high temperature sensitivity of soil
C in tropical forests that may result in substantial soil C losses
with warming and an important positive feedback to climate
change33. Our results also show that, although C contents and
stocks in arid and cold grasslands and shrublands are lower than
those in the tropical and temperate forests evaluated, they are
predominantly protected by minerals, and therefore relatively
more stable against microbial decomposition and elevated
temperatures at a millennial scale34,35.

Biotic and abiotic drivers of C storage in different fractions
during soil development. Given the important reported changes
in the proportion of C associated with different fractions across
ecosystems, we conducted structural equation modeling (SEM,
Fig. 3) to investigate the major environmental drivers of the
mineral protection of surface soil C. The spatial autocorrelation in
our database was accounted by including the geographical
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distance across all plots in our model design (space) (see Methods
and Supplementary Table 1 for details on this and other vari-
ables). We found that contemporary levels of ecosystem pro-
ductivity (as measured with the Normalized Difference
Vegetation Index (NDVI)) and soil fine texture (% of clay and
silt) were the main factors explaining the vast differences in the
proportion of free light and mineral-associated C fractions across
ecosystems (Fig. 3). Our analysis showed that higher precipita-
tion, higher temperature and forest vegetation resulted in greater
levels of ecosystem productivity (Fig. 3). Soil C in highly pro-
ductive ecosystems was predominantly stored in the free light
organic matter fraction (Fig. 3 and Supplementary Figs. 2–6; but
see TA in Fig. 1). In contrast, soil C in less productive environ-
ments was mainly stored in the mineral-associated organic matter
fraction, which was significantly and positively associated with
fine texture content, and indirectly associated with soil age (Fig. 3
and Supplementary Figs. 5 and 6).

Limitations and implications. While our findings contribute
toward a more comprehensive understanding of the changes and
drivers of soil C fractions during soil development across a wide
range of chronosequences, it is important to note that they cannot
be extrapolated directly to infer changes in soil C storage
globally9,19,25,26. Further, the implications of our study can only
be extended to the surface soil layer (0–10 cm) and not to total C
stocks of the whole soil profile9. Our data from globally dis-
tributed chronosequences indicate that mineral protection of
surface soil C changes relatively little with soil development, but
varies considerably across terrestrial ecosystems. Soil age alone,
however, may not be an accurate proxy for the progression of
mineral weathering, which strongly depends on parent material,
and even though we used well-established soil chronosequences,
the occurrence of regressive processes (i.e., erosion) cannot be
discarded without specific mineralogical data. Broad climatic and
ecosystem drivers of soil organic C storage may also mask site-
specific changes attributable to soil geochemistry36. In fact, it is
noteworthy that previous single-chronosequence studies indi-
cated that C stabilization in the surface soil of dry ecosystems,
and in deeper soil layers of moist ecosystems, is largely driven by
soil mineralogy and weathering9,19. Weathering controls the
formation and availability of reactive mineral surfaces that can
stabilize C through sorption or formation of aggregates19. As
such, the amount of C stored in deeper soils layers in temperate
and tropical systems and associated with minerals might also be
less vulnerable to microbial decomposition as soil ages prior to
ecosystem retrogression. While our approach enabled compar-
ison of factors driving soil C contents across soil surface and
across different ecosystems, it did not allow us to estimate how
soil depth interacted with soil age to influence soil C stabilization,
which remains a future challenge.

Conclusions
In summary, our work demonstrates that mineral protection of
surface soil C varies considerably across ecosystem types, but not
that much as soil develops from centuries to millennia in a wide
range of environmental contexts. We found that soil C in warm
and wet forest ecosystems is predominantly stored in free organic
matter fractions as soil develops, and that these soils are highly
vulnerable to reductions in ecosystem productivity and warming
temperatures. In contrast, soil C in cold and arid ecosystems is
mainly stored in mineral-associated organic matter fractions
during soil development, and is mainly driven by soil texture and
far less vulnerable to warming. Taken together, this research
advances our understanding on the dynamics of soil C stability
and temperature dependence during soil development.

Methods
Long-term chronosequences. We used a globally distributed set of 16 long-term
soil chronosequences located in nine countries from six continents, each consisting
of four to ten sites representing an increasing temporal stage during ecosystem
development. The chronosequences cover a wide range of parent material (volcanic
material, sedimentary rocks, and sand dunes), climates (tropical, temperate, con-
tinental, polar, and arid), vegetation (grasslands, shrublands, forests, and crop-
lands), and age gradient (from hundreds to millions of years). Further information
of the study sites was provided in27,37 and summarized here in Supplementary
Fig. 1 and Supplementary Data 1. Climatic type was obtained from the Koppen
classification (http://koeppen-geiger.vu-wien.ac.at/present.htm)38; here we used the
term warm in a broad sense for equatorial, arid and warm temperate climates, and
cold for boreal and polar climates sensu the Koppen classification38. Mean annual
temperature and precipitation was determined from the WorldClim database
(https://www.worldclim.org).

Vegetation survey. For each site, we set up a 50 × 50 m plot representative for the
spatial heterogeneity of the ecosystem. Total plant cover was determined from data
collected in three parallel transects of 50 m, spaced 25 m apart, using the line-
intercept method27,39. We used the NDVI as our proxy for plant primary pro-
ductivity (NPP), referred to as ecosystem productivity throughout the text. This
index provides a global measure of the “greenness” of vegetation across Earth’s
landscapes for a given composite period, and has been widely used to quantify NPP
in large-scale studies40–42. Data were obtained from the Moderate Resolution
Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellites (http://neo.
sci.gsfc.nasa.gov/), which provides data 23 times per year with a pixel size of
250 m × 250 m. We calculated the mean value of NDVI index from monthly data
(2008–2017).

Soil sampling. We collected five soil core samples under the dominant vegetation
type of each plot (a total of 435 soil samples) with an open-tube sampler to avoid
compaction. Each soil sample consisted of a composite of five cores taken from a
depth of 0 to 10 cm (topsoil; excluding litter/plant debris from the soil surface).
This sampling depth, which is consistent with previous works on soil C storage
across spatiotemporal scales19,21,30, was suitable since a number of the study sites
(e.g., youngest sites in volcanic chronosequences) are very shallow, which does not
allow deeper sampling and a comparative analysis of deeper layers across all
chronosequences. The topsoil is the most biologically active layer29, has the largest
concentration of organic C along the soil profile and is particularly important in a
context of climate and land use change1,30,43. Bulk density was calculated as the dry
mass of the soil sample divided by its volume in the field. Prior to further analysis,
the soil samples were passed through a 2-mm sieve. A portion of each soil sample
was air-dried and used for chemical analysis and soil organic matter fractionation,
whereas another portion was stored at −20 °C and used for biological analysis27.
Each soil analysis was conducted in the same laboratory. Fine texture (% clay+ silt)
was determined on air-dried samples by sieving and sedimentation44.

Soil organic C analysis and fractionation. We analyzed the 435 soil samples for
total organic C content by colorimetry after oxidation with K2Cr2O7 and H2SO4 at
150 °C for 30 min45 at the Biology and Geology Department of Rey Juan Carlos
University (Móstoles, Spain). One of the composite soil samples of each study site
was fractionated to isolate soil organic C pools characterized by different
mechanisms of stability and protection from decomposition. We used the well-
established density-based fractionation scheme developed by ref. 28 with slight
modifications46,47. This scheme is widely used in soil organic matter research15,48

and is intended to isolate three soil organic matter fractions directly connected to
conceptual mechanisms of stabilization: a free light fraction organic matter, located
between soil aggregates and accessible to microbial decomposers; an occluded,
intra-aggregate light fraction organic matter, physically protected by occlusion
within soil aggregates and disconnection from decomposers; and a mineral-
associated organic matter fraction, chemically protected from decomposition by
sorption to mineral surfaces and, consequently, with longer turnover times than
free and intra-aggregate fractions.

Briefly, we added 40 ml of NaI at a density of 1.85 g ml−1 to 4 g of soil in a 50-
ml centrifuge tube. The centrifuge tube was rotated at 1 revolution s−1 for 30 s in
an overhead shaker. After centrifugation at 2500 × g for 30 min, the floating (free)
light fraction was separated from the heavy fraction by suction and filtration
through a glass fiber filter and washed with deionized water. The NaI solution was
added to the heavy fraction in the centrifuge tube, and the mixture was sonicated at
an energy input of 1500 J g−1 (calibrated calorimetrically49–51). The floating light
(occluded) fraction was separated from the heavy (mineral-associated) fraction by
centrifugation at 2500 × g for 60 min, suction, and filtration through a glass fiber
filter, and washed with deionized water. We used a density of 1.85 g ml−1 and a
dispersion energy of 1500 J g−1 for consistency with previous studies46,52–54.

The three isolated fractions were oven-dried at 60 °C, weighed, ground with a
ball mill and analyzed for organic C concentration by dry combustion and gas
chromatography using a Thermo Scientific Flash 2000 CN analyzer (Thermo
Fisher Scientific, MA). In the case of the mineral-associated organic matter
fraction, the organic C concentration was determined after acid fumigation to
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remove carbonates55. Soil organic matter fractionation and C concentration
analysis of the isolated fractions were performed at the Institute of Agricultural
Sciences of the Spanish National Research Council (CSIC, Madrid, Spain). We
found a high correlation between the sum of free light, occluded light and mineral-
associated C and the total organic C content analyzed on whole soil samples
colorimetrically as described above (r= 0.987, p < 0.001, n= 87). The median
(interquartile range) C recovery (sum of C content recovered in free light, occluded
light and mineral-associated C fractions relative to the total organic C content) was
89.4 (34.5)%. We found no significant differences in C recovery based on parent
material nor between high and low productive ecosystems (Kruskal-Wallis rank
sum tests, p= 0.669 and 0.368, respectively).

We estimated the stocks of total organic C and its free light, occluded light and
mineral-associated fractions (kg Cm−2) as the product of sampling depth, C
content (g C kg−1 soil) and bulk density (Supplementary Fig. 2). Bulk density was
calculated as the dry weight of the soil sample collected with the core cylinder
divided by its volume, assuming negligible coarse fraction (>2 mm) contents. The
quantification of changes in soil C stocks to a fixed depth over time, however,
requires that soil bulk density does not change through time. This is because the
same depths at different times correspond to equivalent soil mass and layers only if
bulk density remains constant31. Since this condition was not met in our
chronosequences, we focused our analyses mainly on the content and proportion of
soil organic C fractions (proportion of organic C fraction i= organic C fraction i
content × 100/sum of all organic C fraction contents) rather than the stocks.

To address whether our results were contingent on the fractionation method
used (density-based), we repeated the analysis on a subset of samples across
contrasting chronosequences (n= 24) using a size fractionation method, which is
also widely used in soil organic matter research15,18,56. In particular, we used an
automated wet sieving system to separate particulate organic matter (>53 µm) from
mineral-associated soil organic matter (<53 µm) after dispersion with sodium
hexametaphosphate. The free light C separated by density was highly correlated
with the particulate organic C separated by size (r= 0.975, p < 0.001), and the same
was found for the mineral-associated C fraction (r= 0.687, p < 0.001)
(Supplementary Fig. 7). This cross-validation supports previous findings suggesting
that the light fraction separated by density is similar to the particulate organic
matter fraction separated by size15,18. In agreement with previous results47, the
choice of heavy liquid may affect the proportion of occluded and mineral-
associated organic C. In particular, compared to NaI solutions, less viscous liquids
such as sodium polytungstate solutions may result in greater intra-aggregate and
smaller mineral-associated organic C concentrations, because of a greater
effectiveness of the ultrasonic disruption treatment to break up aggregates and the
release of intra-aggregate C, which in turn decreases the amount of C recovered in
the mineral-associated C pool. Also in agreement with previous observations47, this
bias may be expected to be systematic and operate in the same direction across
soils, and thus not to affect our interpretation and discussion on the evolution and
drivers of soil C fractions across ecosystems.

Biological soil analysis. We measured soil basal heterotrophic respiration to
examine soil biological activity across chronosequences. This analysis was conducted
on a composite soil sample per plot by quantifying the total CO2 released over 16 days
from 1 g of bulk soil incubated in the dark at 28 °C and 50% water holding capacity in
20-mL glass vials, after a 1-week-long pre-incubation period. These incubation
conditions were within the ranges found in the literature to measure soil basal
respiration57. In addition to these determinations, we measured the potential
response of soil heterotrophic respiration to temperature (Q10) to assess the vul-
nerability of soil C losses to warming. The temperature sensitivity of the soil microbial
respiration (Q10) was determined on a composite soil sample per soil age (location)
from a subset of eight chronosequences selected to cover a wide range of global
environmental conditions in terms of climate, vegetation types and soil age. The Q10

coefficient represents the increase in soil respiration as temperature increases by
10 °C, and is commonly used to assess warming effects on soil C losses and to model
soil C dynamics58–60. Soil respiration rates were measured after short-term (10 h)
incubations in triplicate at three increasing temperatures (5, 15 and 25 °C) in 96 deep
well microplates61, using the MicroResp technique62. We then calculated the β and R0
coefficients for the exponential relationship between heterotrophic soil respiration
rate (RS, in μg CO2−C g−1 h−1) and temperature (T, in °C): Rs= R0 × exp(β × T); and
used β to compute Q10 using the equation Q10= exp(10 × β). The MicroResp tech-
nique has been successfully used in previous studies for high-throughput quantifi-
cation ofQ10 values61. Higher soil respiration rates andQ10 values were interpreted as
higher soil C vulnerability to microbial decomposition and increases in temperature.
We used short incubations to prevent microbial acclimation to the assay temperature
used in the laboratory63–65. We acknowledge that C respired during incubations may
also represent chemically labile old C that is physically protected in the field but is
freed during soil sampling and sieving in the lab66.

Data analysis. The effects of ecosystem productivity, soil age (binned in three
arbitrary categories: thousands of years, hundreds of thousand years and millions
of years) and their interaction were analyzed by linear mixed-effects models, with
an intercept structure in the random term to account for the lack of independence
among soils from the same chronosequence. We excluded a subtropical chron-
osequence in an area naturally dominated by broad-leaved evergreen forests in

Taiwan (TA) from this analysis, because its natural productivity was altered being
cropped with tea for the last 100 years. Normality and homoscedasticity were
examined visually using residual plots. The relationships between soil respiration
and temperature sensitivity of soil respiration and the relative abundance of free
light and mineral-associated C fractions were also assessed with linear mixed-
effects modeling, including net primary productivity (evaluated with the NDVI
index) and fine texture (percentage of clay and silt) as covariates. P values for fixed
effects were computed via the Satterthwaite approximation. We used SEM67 to
examine the complex (direct and indirect) effects of climate, vegetation, soil age,
soil properties on the proportion of free light and mineral-associated soil organic C.
For soil age, we used a standardized composite variable created from three com-
plementary metrics: a quantitative index of soil age (years; log10+ 1-transformed),
a semi-quantitative index of age range (i.e., thousands of years, hundreds of
thousand years and millions of years) and a qualitative soil age index (standardized
soil age range from 0 to 1 calculated for each chronosequence following approaches
used in previous works68). We first created an a priori model that incorporated all
potential relationships between variables based on prior ecological knowledge
(Supplementary Fig. 8). We included a geographical variable (space) created from
the coordinates and distances between sites to account for spatial dependencies and
information redundancy. The statistical analysis and plots were performed using
IBM SPSS v. 2669, R70 and the R packages ggeffects71, ggnewscale72, ggstar73,
ggtext74, lme475, lmerTest76, patchwork77, readxl78, rgeos79, rnaturalearth80,
tidyverse81.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data associated with this study are publicly available in Figshare (https://doi.org/10.
6084/m9.figshare.12619466).
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